숨마쿰라우데 개정수1 케일리해밀턴정리
게시글 주소: https://io.orbi.kr/0002671086
숨쿰수1 44p에 케일리해밀턴정리의 역을 이용할때 설명이 나와있는데요
단위행렬의 실수배가 아닐때만 쓸수있다고 나와있는데 증명과정이 잘 이해가 안가네요
결과만 외우긴 좀 그런것 같고.. 구체적으로 ㄱ식이 임의의행렬A와 무슨 관계인지 잘 모르겠네요..
그리고 ㄱ식과 ㄴ식을 빼는건 두 식을 만족하는 공통의 A를 구하려고 하는건가요?
글로 보고 답변하시는 분들에게는 죄송합니다 제가 능력이 없어서 증명과정을 못올리겠네요ㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보통 누구 고르징
-
진짜팩트는 3
남자는 167~8 이상은 외모싸움임 그 아래는 뭐 힘내고 내 친구들 중에만 해도 키...
-
키 메타 굴리지 말라는 글 보면 또 160 후반~170초 정도로 저런 글 쓸 거라는...
-
ㅇㅇ
-
자괴감 드니 성적메타를 돌려봅시다 전 수학 오엠알 못 쓰고 내서 50점대....
-
시대 라이브 0
링크?같은거 있나요 오늘 한건가? 현역이라 잘 모름
-
우리 고사장이었고 04였는데 키 180후반에 존잘남이었음 우리 고사장에 공부 잘하게...
-
키150 차은우로 살기 vs 185 지금 얼굴로 살기 5
전 닥후..
-
키 185 넘는데 키 그대로 말하면 기만처럼 보일까봐 178이라고 말하고 다님
-
음
-
죽여버린다.
-
짜증나니가
-
시간 개빨리가네 이거뭐냐
-
몸무게메타 ㄱㄱ 6
본인 2023년 겨울 때 89 -> 2024년 겨울 땐 95 -> 지금은 79임뇨
-
서성한 밑으로 다닐생각 없고 삼수까지 할계획인데 경외시 걸고할까 아니면 쌩으로 할까
-
인정하시오
-
아 섹스하고싶다 3
걍 다 때려치고 가슴 ㅈㄴㅈㄴ큰 이쁘고 마른 여자랑 섹스나 하고싶긔
-
진지하게 어디가 좋을까요 외우는거 못함 영어 못함 생명 싫어함 근데 뭔가 주도적으로...
-
안녕하세요 피오르에듀입니다. 작년에도 결제 관련해서 터진 적이 있어서, 올해 오르비...
-
낙지 2칸인데 60%주네
-
꼭 옆에 그 키 가진사람이있음 Ex) 나 183이야 ㅎㅎ ???: 나 183인데...
-
세젤쉬 하고 있고 수1 끝나면 수2 미적 이어서 들을건데 동시에 미친개념 수1...
-
키메타 하지 말랬지 11
-
키만큰 오크들보단 잘생긴 호빗이 낫지 근데 오크가 더멋있는것같기도 하고
-
냐옹 5
냥냥
-
애옹 15
우애엉
-
처음에 수능 끝날땐 80은 무조건 2라더니 이젠 80이 2일수도? 잘 모름이면 어떡해 제발
-
저메추 해드립니다 11
맛있는거 드세뇨
-
문득 궁금해짐
-
크아악
-
사실 아님뇨 ㅠ
-
다만 객관적으로 큰 키는....
-
이런거 많이 안햐봐서 모르겟음..
-
반박 안 받는다
-
어때여?
-
없지않나? 1등급은 봣는데 만점은없던데
-
편입 시즌인데 현 연약을 다니고 있어요 의대 편입시 연세(원)의를 가면 장점이...
-
일단 분량이 많음 (당시 과탐 1과목 분량이 내용 다 잘리기 전이라 지금 과탐...
-
오늘은 또 뭘해야할까 16
-
25메타처럼 합을구하시오 같은거 만들면 너무 짜치나 짜치는 메타가 요즘 메타야 그래도?
-
근데 사람 많으니까 나 특정못하겠지여…??
-
182 입갤 18
어릴 때 존나게 처마셔 댄 우유 덕
-
컨설팅 3떨하면 12
어케댐?
-
님들아 평가좀 0
Discover [디자인공장]'s exclusive merchandise at...
-
미2틀인데 이게 3이면 말이 안되잖아
-
키/몸무게/길이 합쳐서 250 하면 다들 키를 희생할거라는거임
-
바로 물1화1 차례대로 6.9.수능(6모 물1 -3점 1틀)
케일리헤밀턴정리 증명이
성분연산으로 증명하지않나요?ㅠㅜ
답변 감사요 근데 저는 케일리해밀턴정리의 역이 성립하는 경우에 대한 내용을 물어본거라;; 님은 케일리해밀턴정리의 증명말씀하신거죠?
깊이, 그리고 일반적으로 이해하시려면 선형대수의 이론을 알아야 합니다. 하지만 2차 정사각행렬의 경우에는 좀 더 쉽게 설명이 가능하지요.
2차 정사각행렬에서, 케일리-헤밀턴 정리(이하 C-H)는 주어진 행렬 A = {{a, b}, {c, d}} 로부터 그 행렬이 만족해야 하는 특수한 형태의 방정식을 알려줍니다. 구체적으로,
A² - pA + qE = O
이 p = a+d 와 q = ad-bc 에 대해 성립함을 알려줍니다. 따라서 이 방정식은 원래 행렬에 대한 정보를 어느 정도 담고 있지요.
그러면 여기서 이런 질문을 할 수 있습니다. 만약 2차 정사각행렬 A가 어떤 방정식
A² - pA + qE = O …… (1)
를 만족함을 안다면, 이 방정식은 원래 행렬에 대하여 우리에게 얼마나 많은 것을 알려줄까요? 구체적으로, 우리는 (1)이 성립한다는 사실로부터 우리는 (p, q) = (a+d, ad-bc)라고 단정할 수 있을지 궁금해하는 것입니다.
이를 알아보기 위하여, 행렬 A를 하나 고정해두고, 경우를 나누어 생각해봅시다.
[경우 1] 우선 (1)을 만족시키는 (p, q)의 순서쌍이 유일하다고 가정합시다. 그런데 C-H 정리로부터, 우리는 (p, q) = (a+d, ad-bc) 가 (1)을 만족함을 알고 있습니다. 따라서 이 경우, (1)은 원래부터 C-H로부터 얻어진 이차식을 나타냅니다.
[경우 2] 이제 (1)을 만족시키는 (p, q)의 순서쌍이 유일하지 않다고 가정하고, 가능한 서로 다른 두 순서쌍을 (p1, q1) ≠ (p2, q2) 로 둡시다. 그러면
A² - p1A + q1E = O
A² - p2A + q2E = O
이고 두 식을 빼면 (p2-p1)A = (q2-q1)E 가 성립합니다. 따라서 약간의 논리를 거치면 A가 단위행렬의 상수배가 되어야 함을 얻습니다. 이것이 의미하는 바는, (1)이 원래 행렬에 대한 정보를 C-H보다 적게 갖고 있는 경우는 오직 A가 단위행렬의 상수배인 경우일 뿐이라는 것입니다.
반대로, A가 단위행렬의 상수배이면 (1)을 만족시키는 (p, q)의 순서쌍은 무수히 많습니다.
이로부터, 우리는 (1)꼴의 방정식에서 원래 행렬에 대한 정보, 특히 구체적으로 a+d 와 ad-bc의 값을 알아낼 수 있을 충분조건은 A가 단위행렬의 상수배가 아니라는 것을 압니다.
이것이 소위 'C-H의 역은 단위행렬의 상수배가 아닌 경우에만 쓸 수 있다'라고 하는 이야기인 것입니다.
깔끔한 답변 고맙습니다 원래 행렬에 대한 정보를 담고 있는 식으로 이해하니까 좋네요