근과 계수의 관계를 어떻게 유도할까?& 왜 벡터의 크기를 제곱하면 내적이 나올까?
게시글 주소: https://io.orbi.kr/00011613898
안녕하세요. 일반청의미입니다.
좋은 오후입니다. 나는 신상이 다 털렸고
어휴.. ㅂㄷㅂㄷ 하여튼 그렇습니다..
이 글을 올리는 이유는 하나의 시도이기 때문입니다.
이렇게 했을 때, 누군가는 더 쉽게, 더 기억이 잘 남게 이해할 수 있다는 생각 때문입니다.
어떤 분은 이렇게 말하셨습니다. 이런 간단한 것이 뭐가 도움이 되냐고.
제가 하위권이었던 적이 있냐고 물어보신 분이 계셨어요.
이렇게 쉽고 기본적인 내용이 어디에 도움이 될까요? : http://orbi.kr/00011592572
한단원 배우면 그 전 단원을 까먹는 아이들이 있습니다.
저또한 그런 애였구요. 그렇게 공부를 했습니다. 답이 없더라구요..
글쎄요. 저는 그냥 저를 이해한다고 보시면 됩니다. 저는 저밖에 이해 못해요.
타인을 제가 이해한다고 감히 말할 수 있겠습니까.
그 경험에서 이렇게 쓰고있구요. 이렇게 간단하고 쉬워야 그것이 정리가 된다고 말씀드리고 싶어요.
그것이 공감을 얻으면 저야 감사한 일입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? :
http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
http://orbi.kr/00011521076
저번 칼럼은 이거였습니다!
log a b 에서 왜 a>0, a≠1이어야 할까? & 근과 계수의 관계를 어떻게 유도할까?:http://orbi.kr/00011588911
정답 갑니다.
저는 그래서 복소수 단원에서 대수학의 기본정리에 대한 언급을 조금이라도 하는 것이 옳다고 봅니다.
수학이 어려운 이유는 왜 배워야하는지 모르기 때문이에요. 그리고 어떻게 적용되는지도 모릅니다.
그럴때 수학은 세상에서 제일 어려운 과목이 되버리곤 하죠.
근데 은근히 수학 재밌어요. 그 흥미를 불러일으킬 수 있는 방법이 필요하다 봅니다.
그러면 다음 주제 갑니다!
내가 하도 수1만 올리니까 수1밖에 못하는줄 알았죠?
출처 : 교육청 기출문제
출처 : 평가원 기출문제
출처 : 평가원 기출문제
출처 : 수능 기출문제
이 문제를 어떻게 풀까요?
내적의 최솟값은 어떤 논리로 풀까요?
그것 또한 내적이라는 기본 개념 안에서 다 해석할 수 있을까요?
이제 학교가 개강해서, 간간히 약간씩으로만 칼럼 올리게 될 듯 합니다.
다음 칼럼에서 정답 갖고올게요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
너도 내 맘 안다면 ?
-
심심하다 2
배고프다
-
뭔가 전부 50:50 느낌임 중립적인 사람 ㄷㄷ
-
근데 기분 좋음
-
글 1
말 들어드림
-
인터넷 친구긴하지만 여기서 대화하는 분들중에서 친한분 3분이 인프피임
-
혼자 떠들고 있으면 관심을 한몸에 받고 있는 것 같아서 창피함
-
수능준비하면서 살이 너무쪄서 빼야하는데 계속 먹고싶어요 어떡하죠…
-
작년까진 못봤는데
-
설대 내신 0
평반고~ㅈ반고 내신은 몇점대까지 서울대 내신 BB받나요? 공대가고싶은 생각이...
-
참가자 없어서 참가만 하면 10만원 가져갈 것 같은데 기술이 없어서 기초적인...
-
복권돌리지마제발내꺼야 14
제발
-
사실 칼복학하면 6개월 세이프라고 봐도 되긴 하는데 이거 지금 2주째 고민중임
-
우울해지는 밤 14
왜인지는 몰라도 잠이 오고 mbti정체성까지 알아버리니 착잡해지네요 누군가가...
-
지민정우주정복 2
해동까지 n(<24)시간 남음 ㄷㄷ
-
롤 너무 어렵다 13
해본 게임 중에 젤 어려운거 같아
-
일찍 잠들었다 새벽에 깨고 낮에다시자고…
-
군대 어디로 가야 16
호시노 같은 분대장 밑에서 구를 수 있음?
-
머먹을까 1.불닭 2.간장양념불고기 3.쌀국수밀키트 4.치즈떡볶이밀키트 5.던킨도넛...
-
안 친하면 F고 나 혼자 있으면 반반 이게 맞다.
-
점점 쌓여가면서 풍경 변하는 과정 보는게 ㄹㅇ 참맛인데 말이죠
-
다 자뇨 17
흠.
-
ㅇㅇ? 여긴 아직 비오는데
-
10일 너무긺 ㄹㅇ 기다리느라 목빠지는줄
-
할때마다 i만 고정이고 나머지 랜덤룰랫 수준으로 나옴
-
알바할땐 e였는데 지금은 i,n,f,p 다 80~90퍼임 친구들이 다 그림으로 그린...
-
진학사가 실채점 나오고 갈수록 칸수 내려가고 짜게 된다는 사람들 말이 있는 거...
-
오르비에서 "이새낀 올때마다 있네..."를 듣는 것입니다
-
나 T야?? 17
이 정도면 F로 쳐주시죠 졸려서 T된듯 ㅇㅇ
-
아직 안 나온 건가요? 언제쯤 나오나요?
-
이거 들으면 피가 끓어오르는 것 같음 ㄹㅇ
-
최저 잡아야하는데 공통 47에 미적 8이에요.. 등급컷은 4나오는데 이투스는 57로 잡아서 ..
-
제법 시끄러울지도
-
혹시 여기 커플있어요? 아님 끝내주는 연애경험이 있거나.. 23
차단해버리게
-
전 아니네용 ㅋㅋ
-
오늘부터 갓생살려했단말임.
-
한 번도 안해봄
-
공룡중에 누가 젤 센지 말싸움 붙으면 나는 꼭 티라노가 아니라 타르보사우르스라고...
-
왜클릭 이아니라너무많아서못적음
-
이번주 금에 만나기로 했슴 근데 내친구는 안잘생겼는데
-
킹룡을 사랑하는 지과러로서 인터넷을 뒤지다가 대륙의 킹룡 영화를 발견함. 무려...
-
몸빼키 얼마가 적당할까 11
-
있다던데 이름 개웃김 ㅋㅋ 해남 우항리 지명 따서 해남이크누스 우항리엔시스인데...
-
살 찌우는 방법 있나 16
운동 하고는 있는데 수능 전까지 자주 굶었더니 180에 56까지 빠짐 지금......
-
사반수 0
어떻게 생각하세요 현역때 국어 영어 1고정 수학 98 96 92 백분위 와리가리...
-
뇌빼고 뻘글 뻘댓 벅벅 ㅋㅋ 도파민 폭발
-
재수 사탐런 3
이번 수능 친 06이고 재수 할 것 같은데 사탐런 괜찮나요? 목표는 연대...
-
그럼 인기 많겟지..
-
전대 토목과 0
전대 토목과 학종 3.84합격 가능성있을까요
항상 궁금했습니다. 지금 공부도 안되는데 천천히 정독해볼게요 언제나 감사합니다♥.♥
ㅋㅋㅋㅋ 감사합니다.
어이쿠 손이 미끄러졌...
ㅋㅋㅋㅋㅋ.ㅋㅋㅋㅋㅋ.ㅋㅋㅋ.ㅋㅋ.ㅋ.ㅋ
?실화임??
인성논란 가나요..ㅋㅋ
님 인성의 상태가...?ㅎㅅㅎ
ㅎㅅㅎ
제가 이런거나 합성하고 있을리가 없잔슴
그때 맥락이 이런거였어요.
저 진짜 별거없긴 한데, 개열심히 산다는 그런느낌이었을걸.
그리고 아무리 누군가가 잘나도 그 이상으로 열심히하는사람 못이기는것은
맞는 얘기이긴 하다고 생각합니다.
치대 Goat.. 리스펙 저런생각가지고 살수잇음 충분히 이해됨ㅇㅇ
ㅋㅋㅋ 저 여기서 많은 글을 써왔습니당.
작년 오르비 검토용역 많이했고.
열심히 한다는것은 자명하지.
근데 저도 열심히 해서 잘된다는 것은 확신을 못하겠어요 그냥 하는거지
일단 그래도 꽤 신박한 시도를 한다는 건 맞다고 생각해요.
"내적의 연산에서 분배법칙이 성립하는 이유" 를 물으시는 건가요?
ㄴㄴ 내적의 연산에서 분배법칙이 성립하는 것은 교과서에 나와있어요.
분배법칙을 받아들인다면 저건 자명한 식인데요?
|a+b|^2=(a+b)(a+b)니까요
이것조차 쉬웠던건가...ㄷㄷ
근데 왜 그런건가요? 왜 크기의 제곱이 같은것을 내적한 것이 되나요?
코사인이 1이기때문이졍
ㅋ... 정말 바로나오네여..ㄷㄷ
맞습니다. 두 벡터의 합은 한 벡터로 표현가능함을 우리는 압니다.
한 직선을 똑같이 내적하면 되는것이죠.
진짜 바로나올것같은데.. 쪽지주세여..ㅋㅋㅋ
근데 중요한것은, 학생 스스로가 생각하지 않는 공부는 옳지 못합니다.
이건 되게 중요한게, 시험장에 들어가는 사람은 학생 본인이기 때문입니다.
직접 그 개념의 원리를 생각하고, 개념이 문제에 어떻게 연결되는지를 생각해야해요.
이 글은 그것에 도움을 주는 글입니다.
근데 수학배우면서 느낀것중에 내적은 왜하는지 모르겠음여 미분은 변화율같은거 알수잇는데 내적의 원리는뭐죠..ㅜ
내적은 cos 값을 구하기 위한 도구로 배웁니다.
물리에서 매우 중요합니다.
고3 이과생입니다 수학학원 다니다가 학원에서 문제푸는방식이 이해도 안되는데 우겨넣는식이라서 끊으려하는데 옳은판단 이겠죠?
네
일단 님입장에서 이해를 해야지요
님이 이해할 수 없는지식은 쓸모없는것임
개인적인 생각으론 모두가 좋다고해도
본인이 힘들면 아닌것이라 생각합니다
그냥 내적의 정의에서 a•a=|a||a|cos 0 =|a|^2 가 되는 거는 자명하지 않나요?
맞습니다. 그러므로 그 거꾸로도 성립합니다.
우리는 벡터의 합을 배울때 두 벡터의 합은 직선이라는 것을 배웠어요.
그것을 이해한다면 쉽게 생각할 수 있는 개념이었어요.
이제 그 밑의 문제는 어떻게 생각해야할까요?
그 밑의 문제 4개는 이제 비슷한 문제일 수 있음을 유추할 수 있는데.
이렇게 쌓아나가는 공부가 진짜 공부라고 생각해요
두 벡터가 이루는 각이 달라질때 벡터의 크기에 변함이 없다고 할때 두 벡터의 합 a+b의 크기|a+b|를 생각해보면크기는 양수이므로
|a+b|^2= |a|^2 + |b|^2 +2a•b
= |a|^2 + |b|^2 +2|a||b|cos@
인데 |a| 와 |b| 의 크기는 일정한 값이므로
벡터의 합의 크기의 제곱의 최대는 위 식에서 cos@ 가 최대여야 하겠네요. 즉 0<=@<=pi 라고 하면 각@의 크기가 커질수록 cos@값은 줄어드니 결국엔 두 벡터가 이루는 각이 작을수록 벡터의 합의 크기의 제곱은 커지게 되는데, 크기는 양수이므로 제곱근을 취한 벡터의 합 |a+b|도 각이 작아질수록 커지겠네요.
이제 우리는 내적의 값이 벡터의 합의 크기에 영향을 미치는 것을 알았네요.
즉 결과적으로는 위 4문제는 내적의 최대최소를 구하는 것입니다.
이제 하나만 더해보면, 그 각각의 문제를 접근하는 전략은 어때야할까요?
물론 그또한 내적의 정의가 반드시 들어가야합니다.
정말 참 맞는 답변 감사합니다
집가서 봐야징ㅎ
ㅎㅎ
저는 벡터의 내적과 외적(교과외긴하지만)의 의미가 무엇인지 오르비에 묻고싶습니다.^^
결국 각을 구하기위한 도구..?
근데 벡터의 합과 내적이 관계가 있는것을 이번주제를 통해 알게됐다면
이렇게 내적의 의미를 연장할 수 있다고봐요
외적은 잘 모르겠어요
발산, 회전
?? 발산과 회전인가요?
다이버전스랑 컬을.. 고교과정에서? 글쎄요, 제 실력이 부족해선지 잘 모르겠습니다.
빗자루 너머로 보는데 흥미가 생기네요 호호홍
컨셉 밴좀...ㄷㄷ
진짜 청소아줌만데..
헐...ㄷㄷ
질문가능합니까??
까는것도가능
판별식을 쓰는 이유중에
그냥 단순히 관계식의 수를 미지수의 수와 맞춰주기 위해서도 쓰나여?
무슨소린지 잘 모르겠습니다
판별식은 이차방정식에서 정의됩니다.
관계식이 무엇이고 미지수는 x일것같은데
무엇을 맞춰주나요?
1)우리는 보통 미지수가 두개가 있으면 식 두개를 연립해서 문제를 풀어나가지 않습니까
위의 경우처럼 곡선과 직선의 식을 연립하여 만든식에
판별식을 사용하여 m의 값을 찾아낼때, 더이상 만들 수 있는 식이 없기때문에 사용하는 거죠?
판별식은 이차방정식의 근을 판단하는 도구입니다.
Only?
제 칼럼에 쓴걸 참고하세요.
기본적으로 교과서에서는 그렇게 서술됩니다
또한 저는 덧글의 표현이 이해가 잘 안가는데,
교과서의 방법대로 표현을 수정하시면 도움될듯합니다.
더이상 만들 수 있는 식이 없기때문에..
이 말이 이해가 되지않아요
크흠 캄사합니다 생각좀더해서 말바꿔오겟음 이해되실말로..
노노
교과서적 표현으로
바꿔오셔요
저는 교과서보고 내적을 "방향을 고려한 곱셈" 이라고 생각했습니다. "벡터는 크기에다가 방향도 있는 물리량이니까, 곱셈에 방향을 고려한다. 방향이 같으면 온전하게 곱하고, 방향이 차이날수록 온전치못하게 덜곱하고, 방향이 직각이 될때 0으로 약속하고, 정반대가 될때는 -1로 약속한다." 라는 해석을 뽑아냈는데..
두유공신님은 벡터의합으로 푸시는거같네요.. 빨리 두유해설 보고싶어요!