Whitehead Torsion
게시글 주소: https://io.orbi.kr/00071714315
Motivation: "그들의 대화" 에서 최근에 나오는 핵심 용어들 중 하나가 Whitehead torsion이라는 것인데, 이러한 것을 고려하는 이유에 대해서 먼저 설명하기로. 모든 것의 기원은 소위 "cobordism theory"에 기반을 함: Let $M$ and $N$ be smooth closed manifolds of dimension $n$. An \textit{$h$-cobordism} from $M$ to $N$ is a compact smooth manifold $B$ of dimension $(n+1)$ with boundary $\partial B \cong M\coprod N$ having the property that the inclusion maps from $M$ and $N$ to $B$ are homotopy equivalences. If $n\geq 5$ and the manifold $M$ is simply connected, then the Smale's $h$-cobordism theorem says that $B$ is diffeomorphic to a product $M\times [0,1]$ (and, in particular, $M$ is diffeomorphic to $N$).
다시 말해서, cobordism은 두 다양체 M,N을 자연스럽게 interpolate하는 것을 말함. 여기서 $h$는 homotopy를 말하고, 그 이유는 up to homotopy로 interpolate을 했기 때문. 5차원 이상에서는 이것이 어떤 면에서 ``trivial'' 하다는 것을 말함. Smale이 이 정리를 이용해서 5차원 이상에서의 Poincare Conjecture를 풀었음 (예에에전에 한번 이거 관련 글 썼던 것 같음).
이러한 좋은 이유에 의해서 cobordism theory를 not simply connected인 경우에는 어떻게 사용할 수 있을까 사람들이 고심을 하고, 그렇게 나온 것이 s-cobordism theory임. 이것을 좀 더 자세히 설명하기 위해서는 몇몇 정의들이 필요함:
Definition. Let $X$ be a finite simplicial complex. Suppose that there is a simplex $\sigma\subset X$ containing a face $\sigma_0\subset\sigma$ such that $\sigma$ is not contained in any larger simplex of $X$, and $\sigma_0$ is not contained in any larger simplex other than $\sigma$. Let $Y\subset X$ be the subcomplex obtained by removing the interiors of $\sigma$ and $\sigma_0$. Then the inclusion $\iota:Y\hookrightarrow X$ is a homotopy equivalence. In this situation, we will say that $\iota$ is an \textit{elementary expansion}. Note that $Y$ is a retract of $X$; a retraction $X$ onto $Y$ will be called the \textit{elementary collapse}.
Definition. Let $f:Y\to X$ be a map between finite simplicial complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition of elementary expansions and elementary collapses.
모든 compact smooth manifold는 PL 이기 때문에 finite simplicial complex structure를 갖게 됨. 따라서, smooth manifold의 경우에는 simple homotopy equivalence라는 것을 이야기할 수 있음.
s-cobordism theorem. Let $B$ be an $h$-cobordism theorem between smooth manifolds $M$ and $N$ of dimension $\geq 5$. Then $B$ is diffeomorphic to a product $M\times[0,1]$ if and only if the inclusion map $M\hookrightarrow B$ is a simple homotopy equivalence.
이제 이 s-cobordism theorem을 적용하기 위해서는 언제 homotopy equivalence of smooth manifolds $f:X\to Y$가 simple homotopy equivalence인지 알아내는 것. 이걸 Whitehead가 해결했는데, 각각의 homotopy equivalence $f:X\to Y$에 대해서, 어떤 algebraic invariant $\tau(f)$ called the \textit{Whitehead torsion} of $f$ 라고 하고, 이 torsion은 \textit{Whitehead group} of $X$라고 불리는 특정 abelian group $\mathrm{Wh}(X)$에 존재함. 이 torsion이 정확히 simple homotopy equivalence의 obtruction임. 다시 말해서, $\tau(f)$ vanishes if and only if $f$ is a simple homotopy equivalence.
이제 이 Whitehead torsion이 구체적으로 무엇인지 알아보기로.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
영어 시험(teps) 9일에 본다는데 오티는 16일에 있음
-
직접 신고 않아도 경찰에 적극적 허위진술…대법 "무고 처벌" 2
'성범죄 무고' 무죄 파기…증거 제출·경찰 항의 등 고려해 "신고 해당"...
-
아니 잡담한거 담뇨단들이 다 적었나보넼ㅋㅋㅋㅋㅋㅋㅋ
-
해요 그녀의 친구라도 이 노랠 듣는다면 그녀에게 전해줘요 내가 아직 사랑한다고.
-
사실 히게단디즘이 제일 좋을 것 같긴해요
-
관ㅇㅏㄱ이 나를 부른다
-
확통에서 분할 3
분할이랑 조 추첨같은 집합의 분할은 다 빠진건가요?? 내신에는 나오나요?
-
문과 어느정도가 쓸 수 있음? 경한성적이면 무조건 붙는정돈가
-
침대 or 화장실 10
바닥
-
윤도영 입시설명회 봤는데 지역인재는 진짜 너무하네 13
어떻게 의대 5천명 중에 지역인재가 절반이냐;;; 그리고 경기 인천은 왜 지역인재...
-
정답은 칭찬해줘야 한다 입니다 왜냐면 그것도 이제 내꺼니까!
-
[단독] 이재명 '민생지원금 포기' 제안에 최상목 "민생입법 없이 추경 없다" 1
【 앵커멘트 】 어제(31일) 이재명 더불어민주당 대표 '민생지원금 포기할 테니...
-
맞춰보셈
-
지듣노 16
한번씩 듣고 가세요
-
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
가4나1 시대 등급 기준 생각하고 있었는데 아 ㅋㅋㅋ
-
수학 N제 고민 중입니다 기출 3번정도 돌린 후에 풀 계획이고 지금 1번...
-
3일 참았는데 16
방출해도되는거 아닌가요
-
운동 끝! 5
씻고 오겠습니다.... 탕에 몸을 담거야겠어...
-
재밌긴 한데 이걸 선택했다가는 점수도 재밌어 질 거 같음
-
수학 최상위권 비결 21
제발 알려주세요 ㅜㅜ 높2~낮1이 높1 되기 위해서 뭐 해야하나요.. 지금은...
-
십 작 아
-
정답은....Chat gpt(채찍pt)입니다!!
-
[서울=뉴시스] 최지윤 기자 = MBC 기상캐스터 오요안나(1996~2024)가...
-
아시는분 있나요?? 이게 제가 국어를 잘하지 않는데 정답률이 꽤 잘나오네요 쉬운편인거죠??
-
내가 진짜 좋아하는 유튜버(나는 랄팤 팔차선) 영상은 올라와도 밥먹을 때 먹으면서...
-
혹시 블랙마켓이라고 생각하셨습니까? 당신의 그런 차별적인 생각이 인류애에 미치는...
-
주관적 재미티어로 일반사회>>>지리>윤리=역사임
-
조금 된거긴 한데
-
경제+화1은 신종변태?
-
[칼럼] 독서 왜 어려울까? 약간의 국어 교육학 개론을 곁들인 9
국어 점수를 잘 받는 방법은 간단합니다. 잘 푸는 것이죠. 하지만 쉽지 않습니다....
-
여러 해설을 맛보는 건가
-
아직 전역 안해서 내년에야 입학할 것 같은데 잘 지낼 수 있겠지?
-
강기원T 시즌2부터 합류하면 많이 빡센가요? 아직 미적분 진도를 다 못 빼서 개념...
-
경제에 감동이 있는거임...
-
헬스끗 6
갓생러로 살기 0일차
-
걍 경제할거면 물리 ㄱㄱ
-
혹시 블랙홀이라고 생각하셨습니까? 당신의 그런 차별적인 생각이 우리의 미래를 더욱...
-
최저용으로 학원에서 어삼쉬사랑 수특 풀고 있는데 어삼쉬사는 풀면 한스텝당 2문제...
-
7개중에 4개를 못풀어 야발 ㅜㅜㅠㅜㅜㅜㅜㅠㅜㅠㅜㅠㅜㅠㅜㅠㅜㅠㅠㅜ 이건 짬때리고...
-
굿닥터 미국 일본 터키 중국에서 리메이크된 초히트작 법률 드라마로 치면 이상한...
-
학벌로 최상위권이 아닌데 대체 인간이 맞나 싶은 능지를 가진 괴물들이 있음
-
ㅇㅇ
-
전투력 올라가긴한다 그래도 힘드렁...
-
N제들 수십개씩 사서 하루컷 며칠컷 인증하면서 N제 평가하시는 분들은 적백...
-
혹시 깜깜무소식이라고 생각하셨습니까? 당신의 그런 차별적인 생각을 청소년들이 듣고...
세줄요약좀
1. 멋진 대화를 하고 있는 사람들 대화에 끼고 싶다
2. 대화에 끼려면 그 사람들이 무슨 말을 하는지 이해해야 한다
3. 따라서 그들의 대화 중에 나오는 용어들을 먼저 알아볼까 고민중이다