미적 질문 (간단하게 정리했음)
게시글 주소: https://io.orbi.kr/00071251089
g(x)가 아무런 조건도 없는 상황인데
2x+npi 꼴이라 할 수 있나요?
g(0) = npi 가 아닌 상황이면
꼭 g'(0) =2 일 필요는 없는 거 아닌가요??
미적 너무 오랜만이라 헷갈리네요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
반수 이중등록 11
합격하고 새로 붙은 대학 예치금? 넣기 전에 자퇴해야되는건가요 아니면 전적대 등록금...
-
학생들이 나보다 어려보임:가짜현타 조교들이 나보다 어려보임:진짜현타
-
호머실모단 4
-
텝스 청해 대비 6
자막 없이 영화 보는 중
-
현실이 너무 암울해서 커뮤에서라도 잘나가고 싶었어요
-
테:무대란 이러는 새끼는 ㅈㄴ 역겨움
-
-커리- 수특,수완 드릴 드릴드 지인선n제 빅포텐 하4십 샤인미 설맞이 수분감 서킷...
-
한달용돈 6
얼마받음?
-
정보) 현재 난리난 테 무 x 네이버페이 대란 요약.jpg 2
https://xurl.es/4stnb
-
누군지는 말안하겠음
-
밥먹으러 슛 2
아침식사 가보자
-
f(x)=g(x)/x-a 를 h(x)/x-a + M 으로 놓고 엄청 쉽게 풀던데...
-
메인글 보니까 갑자기 생각나서 말함 전여친은 서울대생이었음. 본인은 아는 서울대생이...
-
사탐 뭐가낫나요 1
사문 세지 한지 중 두개 하고싶은데 세지한지가 재밌어보이는데 고였다는 말이 많고...
-
임티로만 대화하기 15
도전자를 구합니다 ㄱㄱ혓
-
오르비라 읽는거 아니냐
-
왤케 다들 시대가라고 하지..
-
가격싸고 양많음
-
시발점 0
형님들 스탭 2는 처음부터 잘하기 어렵죠? 어려운 문제는 개념을 아무리 봐도...
-
한녀식 통매음 고소할게요
-
안녕하세요 인서울 하위권 4년제 다니다 휴학하고 작년 9월에 입대해서 군생활중인...
-
오르비에서 우쭈쭈 해주는게 신기할 따름이었음 아니나 다를까 갑자기 탈퇴
-
ㅈㄱㄴ
-
ㄹㅇ
-
근데.. 3
.
-
노베고 1단원배우는중인데 한강의에서 배우는게 세계사 2배는되는데 이거맞음??...
-
공군 준비하는 과정은 대략 어느 정도로 힘들었음? 공군 준비하는거랑 비슷한 난이도의...
-
https://theyouthdream.com/politics/30317219 내말들어...
-
재밌네
-
이신혁T 라이브 0
1,2회차 안듣고 3회차부터 들어도 될까요?
-
대형학원 다닙니다. 거기서 수1수2 특강 하면서 킬러 문제 풀이 하긴 하는데...
-
맛만 좋으면 그만 아님?
-
ㅈㄱㄴ
-
뭔 메타 10
콘
-
ㅅㅂ 아르세우스 만나기 ㅈㄴ 힘드네 어제부터 밤새서 도감작하는데 하
-
누가싸웠냐고 물어보는사람밖에없는데 혹시 이것도 메타인가?
-
상상 리마스터링 2회 ㄱ
-
고3은 앉아서 공부만 ㅈㄴ 열심히 하면 끝인데 군대는 그냥 뭐....18~21개월을...
-
올오카 순서 0
오리진 다 듣고 올오카 들으려는데 독서부터 들으면 되요건가요? 아니면 독서 문학...
-
누구 또 싸움? 0
왜 싸움??
-
죄송합니다ㅜ 고2 수학 모고 낮3이고 지금 현우진 개정 전 시발점으로 수1 삼각함수...
-
원래 독서실or학원이였어서 많이 못 봤는데 수능은 빠르게 털고 나오는게 맞아..
-
응ㅇ애 7
혐애가하고싶다
-
ㅇㅇ그게맞다
-
진학사 관련으로 저격받았을 때 슬펏어
-
어떻게 새해 되자마자 또 이러냐? 앞으로 옵챗 파서 당사자끼리 거기서 싸우자
-
점공계산기 돌려보고싶은디 기억이 안남ㅅㅂ
-
진짜로 궁금하다고
사실 저도 그 생각햇는데
머지 싶음 지금
오...과외 준비하시는건가요?
양변 미분해보세요
아닌가
맞내요 이거
g'(0)=0이면 g(x)가 왜 상수인지 알려주실수잇으신가요
g'(0)=0인데
그 외에는 미분계수가 0이 아니라면요??
아 헷갈리네..
충분조건이지 필요조건은 아닌거같은데,,,
아니네 맞네,,,씹
아니네 아닌데
원본 문제 보여주실 수 있나요?
오른쪽항이 0부터 2X까지라 N파이인거 아닌가요'
g(0)이 N파이가 아니면 g(x)-g(0)=2x라고 해도 좌변 우변이 같다는 보장이 없어요
사인제곱을 0부터 2X까지 적분한거랑 0.5파이부터 2X까지 적분한게 다르자나요
g가 1차함수라는 보장이 없어서
시작점이 달라도 얼마든지 적분 결과는 같게 만들 수 있긴 해요
위끝 아래끝 기준으로 좌변은 미지수, 우변은 상수가 나오게 두면 g가 2x+C 꼴로 나와야 함이 보이고, 우변의 한쪽 끝이 0으로 고정이니까 좌변도 f의 절편이 경계여야 함 즉 +n*pi
인 것 같네요
오류 맞는 것 같네요
함수 h(x)=1/2(x-sinx*cosx)에 대해 h'(x)=sin^2(x)니까
h(g(x))-h(g(0)) = h(2x)-h(0)이 성립하고, 이때 h(x)는 일대일대응이니 역함수가 존재해서 임의의 g(0)에 대해 g(x)=h-1(h(2x)+h(g(0)))과 같이 g(x)를 정의할 수 있어요
물론 g(0)=npi가 아니면 g'(0)=0이고요
사진은 g(0)=pi/2인 케이스에서 g(x)의 그래프에요
생각해보니 원본 문제에서는 g'(x)가 나타나는데, 이런 식으로 정의되면 특정 점에서 약간 x^1/3 그래프랑 비슷한 형식으로 미분계수가 발산하는 문제가 있긴 하네요
그렇다고 미분가능이라 명시된 건 아니라서, 여러모로 애매하긴 해요
검토가 안된 문제같네여...
선생님 답변 정말 감사합니다 ㅠㅠ
뭔가 이상한건 느꼈는데
현우진 쌤 교재라서 해설이 무조건 맞을 줄 알았네요
감사합니다!