수학 채점할 때 현타옴
게시글 주소: https://io.orbi.kr/00070903523
수1 풀고잇는데 그래프 문제 열심히 풀고 답지 보면
답은 맞는데 답지 풀이가 너무 깔끔하고 쉬워서 현타와요..
고1 내신 때는 그래도 푸는 속도 올려서 풀이 더럽거나 복잡해도 그대로 했었는데 수1, 2랑 미적분은 이대로 하다가는 수능 때 망할 것 같아요..
이런 경우엔 그냥 답지 풀이 계속 베껴서 연습해야 하나요? 아님 고1 때처럼 속도 올려서 커버해야하나요.?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
외대한테 저렇게 할려나? 절대 안그럴거 같은데 외대 어문은 동홍 전자보다 낮을건데...
-
오늘 방송 못봤다고요;;
-
나군 둘중 뭘 쓰는게 더 안전하게 붙을거 같나요? 막판에 최초합 뜬거는 안쓰는게...
-
이과면 외대팰 이유가 없으니 문과일거 아니야 흠....
-
뽀뽀하고 끗내자
-
식물갤 홍보•• 7
이거 저임뇨•• 가끔 글쓰니까 많관부
-
설대가 연고대보다 높다고 주장하면 설훌임? 라고하면 안되겠죠..
-
투표로 해보자
-
ㄱㅁ 13
-
여기서라도ㅜ열심히 살아야지..
-
아니면 혹시 반수 못하는 수시러분들인가?
-
힘들때 쉬면서 산책하고 하원할때 산책하며 얘기하는게 힐링임 모르는거 물어보고
-
스피드 외건이거든.
-
진짜 싸우고 있네
-
보스웰리아 네글렉타라고 불리는 보스웰리아 속의 식물입니다 아로마 성분이 있어서...
-
조조됏내
-
나혼자 외훌이야기 하는거 자체가 이미 좌표방은 성립인거임. 외훌분들 정신차리세요....
-
이성계가 조선 만들때 건국대 햇다는거임 유익햇다면 덕코좀
-
7년간 우울증을 앓고 있고, 반수해서 25 수능 친 사람입니다. 혹여 제가...
-
지금 외대성적인데 이렇게까지 거론되는걸보니 기분이 좋네요.. 제전적대는 관심도...
-
고닉임?
-
제가 최전선에 서겠습니다 믿어주십쇼 가히 일당백의 포스를..
-
원서접수할때 3개월이내 사진이어야되는데 그것보다 시간이 지난사진접수하면 걸리나요?
-
미친듯이 왜 싸우는거지 인생에서 가진게 학벌 단 하나 밖에 없어서 그걸 부정당하면...
-
여러분 저 축하해주세요 11
건대 에타에 박제되었어요
-
외대는 영어로 why can do임.. 유익하다면 덕코좀
-
물어도 합법이잖아
-
막상 글 들어가보면 좌표니 뭐니 그런 거 없으니 선동 그만해라^^ 당장 오늘 에타로...
-
냥대 1
원서모집마감시간 몇시에여?
-
부거왔다 9
-
자기 학교 짱짱맨 이게 끝이아니라 너네 학교 똥통맨 ㅇㅈㄹ하는거였어?
-
외건대전 만한게 없지
-
도와줘요 스피드외건
-
1년이 또 지나니 10
대부분 새로운 사람들 뿐이네... 물론 아직까지 남아있거나 환생한 사람들도 있지만
-
외=건 0
=서고연서성한중경이시동홍과숙부울인아국숭세단광인가전충명상가경
-
기숙학원 로맨스 4
무려 2년 전 이야기
-
나처럼 안가고 생재수하면 대학때문에 싸울일 없거늘..
-
시대인재 대치 낮은 반이라도 가능한가요ㅠㅠ
-
ㅈㄱㄴ
-
외대 장점 5
부엉이가 귀여움뇨
-
쓰면 무조건 떨어지겠죠?
-
우선 모든 코덱스(아프리카 식물)은 크게 “실생”과 “야생”으로 나뉩니다 실생:...
-
이수린보고 바로 알아차리는 사람들 있네 ㅋㅋ 별개로 그덫발포는 씹명반임
-
이런
-
경외시는 엄청 친한데 11
같은 회기라 서로 친하게 지냄 약간의 동질감도 있어서
-
은테 확인용 6
ㅇ
난 답지 진짜 추천 안함... 답지 베끼면서 수학 공부하는 아이들 있던데 그런애들 장기적으론 실력 절대 안 늡니다.. 차라리 오래 걸리더라도 내가 끝까지 붙들고 문제 푸는 아이들이 결국엔 수학 실력 떡상해서 적백 받는거임! 전 후자였슴요
그냥 제 방식대로 쭉 밀고 가는 게 좋겠죠? 겨울방학이니 n제나 실모 계속 돌리면서 여러 유형 겪어봐야겟네요..
푸는 속도 올리는 건 개인에 따라 다르지만 한계가 찾아옴. 이 한계가 100점을 맞기에 충분한 지점이라면 상관없지만, 보통은 그 전에 한계에 부딪히는데 이러면 어차피 풀이를 뜯어고치긴 해야 함
뜯어고치고 싶은데 어떻게 해야할까요? 답지는 항상 제 방식대로 풀고나서 보는데 볼 때마다 너무 차이나서 고칠 방법도 모르겟어요..
최종적인 지향점은 답지와 같은 비효율적인 풀이가 아닌 혼자서 끙끙 앓아가며 터득한 나만의 풀이지만, 아직 이 단계까지 가기에는 너무 멂. 그렇다고 답지에 의존하면 실력 향상에 필요한 경험치를 뺏기는 셈임.
그런 고로 현 시점에서 해볼 법한 노력은 내가 풀었던 문제 중 풀이가 좋지 못하거나, 논리에 비약이 있는 문제를 시간 상관 없이 최대한 간결하고 비약 없이 풀려고 끙끙대보는 거임. 충분히 풀이를 다듬었다면 답지와 비교해서, 답지에 준하는 수준으로 깔끔하다면 일단은 합격. 또 답지의 풀이도 뜯어보면서 어떤 흐름인지 정도는 익혀보셈.
하지만 위에서도 언급했듯, 답지의 풀이는 지향점이 아님. 우리는 더 좋은 성적을 받기 위해 이보다 더 나은 풀이를 고민해야 하지만, 우리에게 주어진 정보만으로는 더 이상 풀이를 다듬기 힘든 순간이 옮. 그때부터 보통 잡기술을 익히기 시작함. 다만 이 잡기술은 적어도 내가 이해할 수 있어야 함. 이게 어떻게 증명되는 건지도 모르고 달달 외워서 쓰다간 조금만 변주를 줘도 활용하지 못하는 경우가 많음.
이렇게 익힌 잡기술, 자명한 사실이나 정리 등을 상기하면서 풀이를 점점 다듬어가는 거임. 이때부터 무한n제의 늪에 본격적으로 빠지기 시작함. 이제부터는 그저 자기 재능이 감당 가능한 선에서 최대한 고능아스러운 풀이를 구사하기 시작하고, 이렇게 익힌 풀이는 무한실모로 계속 실전처럼 연습하고 또 연습하는 거임. 특출난 고능아가 아닌 이상 대체로 이런 과정을 거쳐가면서 수학 높1이 나오는 거
혹시 그 잡기술 알려주는 게 수분감이랑 뉴런인가요..? 내신대비를 위해서 뉴런이랑 수분감 태우는 게 현명한 선택일까요ㅜㅜ
근데 답지 풀이 보면 대부분 비효율적으로 푸는데 그런 답지가 효율적으로 보일 정도의 풀이라니 궁금해지네요
그래프 풀 때 비율 안 챙기고 길이를 보는.? 아직 초반이여서 문제 쉬운데도 이상하게 푸니까 저도 답답햐요