이거풀어보새요
게시글 주소: https://io.orbi.kr/00070884019
난 너무 찝찝하게풂.
개인적으로 뭐처럼 보이는거 직관으로 미리 찍어놓고 그게되는이유를 논리 끼워맞춰서 풀어내는거보다
정공법으로 논리적용해서 정방향으로 뚫어버리는걸 좋아하는데
그러질못함
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
17살 스펙 ㅁㅌㅊ? 18
이쁨 가출함 아이 둘 아이 아빠 도망감 눈 반짝거림
-
저도.. 무물보 13
저도 팔없는데 그냥 해볼래요 ㅎㅎ
-
4천덕 뿌림뇨 9
선착 4명한테 1000덕씩 드림뇨
-
연대 경영 정시로 뚫을라면 확통 사탐 기준 몇개 틀려야 하나요? 3
뷸수능 기준 영어 제외 1 가정하에 확통 정법 윤사로요
-
(진짜 모름)
-
진짜 빨라야 2월말-3월 초중순 시작일텐데 오티랑 커리 둘러보면서 공부 계획 짜고...
-
2칸도 안나오는 서성한 공대에 스나할까
-
나도 수학여행 썰 14
고등학교의 수학여행 답게 당연히 다들 술판을 벌임 나도 끼고 싶어서 평소에 친하다...
-
나 생일 2월이야 15
준비해놔
-
똥칸 6시간 감금썰 14
환급대상 대학 붙여놓고 반수하려는 사람인데요 2025 메가패스 환급받는데에 2026...
-
난 애교 부리면 안 돼?
-
진짜 어케함??
-
근데 새터가면 뭐해요? 14
ㅈㄱㄴ 막 레크레이션 그런거 하려나뇨?
-
언제까지나 과거에 머물러있을 수는 없다
-
연, 갑종이자배당소득세, 꼬1기, 구쏘개2세<< 이사람들 언제옴...
-
아저씨!!!!!!!!!!! 거기 내리시면 안돼! 뭐하는거여 정류장이 아녀 거긴!...
-
작년에 경영 수시 썼다가 개같이 떨어졌는데 올해는 갈 것 같아서 기분이 너무...
-
차단리스트가 텅 비었어
성관계요?
문제풀어보셈
화질 에바
다시올림요
32 ?
정공법 ㄱㄴ
ㄱㅁ
설명의 편의를 위해 e^(ax²+bx+c)=g(x)라 하겠음
f(x)는 (가)에 의해 (2, 0) 점대칭
(나)에 의해, 2|f'(x)|≤f'(8)-f'(0)
x에 0과 8을 대입하면 f'(0)≤0, f'(8)≥0
부호를 감안해 절댓값을 씌우면
2|f'(x)|≤|f'(0)|+|f'(8)|
따라서 |f'(0)|=|f'(8)|이며 이는 |f'(x)|의 최댓값임
f'(0)은 최솟값, f'(8)=f'(-4)는 최댓값임
g'(x)=(2ax+b)e^(ax²+bx+c)
g''(x)=(4a²x²+4abx+2a+b²)e^(ax²+bx+c)
f'(-4)가 f'(x)의 최댓값이므로
g'(-4)는 g'(x)의 극댓값, g''(-4)=0이며
g''(x)는 x=-4 부근에서 +→-로 부호가 바뀜
f(x)의 x=0에서의 좌미분계수가 g'(0)가 같으며
f'(0)이 존재하므로 f'(0)=g'(0)
따라서 g'(-4)+g'(0)=0
g'(x)는 x=-4에서'만' 최댓값을 갖고, 점대칭함수이므로 g'(-4)+g'(x)=0을 만족하는 x는 하나뿐임
이를 만족하는 x가 0이므로
따라서 g'(x)는 (-2, 0)에서 점대칭, -b/2a=-2
g''(-4)=0과 연립하면 a=-1/8, b=-1/2
f(0)=e^c, f'(0)=-e^c/2
f(2)=0이므로 f'(0)이 f'(x)의 최솟값임에 위배되지 않으면서 f(2)=0이려면 f(x)는 0~2에서 1차함수임
정적분값을 이용해 c를 구하면 c=2
따라서 c/ab=32
사진을 찍을 수 없고 패드나 노트처럼 필기가 용이하지도 않아서 부득이하게 글로 풀어썼음
정성추