낫
게시글 주소: https://io.orbi.kr/00070074391
Q. Can a boundary map on a long exact sequence of homology on manifold be interpreted as an actual topological boundary of a manifold representing the homology class?
A. True if the class is representable by a manifold with boundary. If $M$ is a compact $n$-manifold with boundary, it has a fundamental class $[M]\in H_n(M,\partial M)$ (coefficients being whatever as long as you're orientable w.r.t. them) and its image under the connecting homomorphism of the pair $(M,\partial M)$ is the fundamental class $[\partial M]\in H_{n-1}(\partial M)$ of the closed $(n-1)$-manifold $\partial M$ with the induced orientation. So, if $f\colon(M,\partial M)\rightarrow(X,A)$ is some map of pairs (the representing manifold of a class), naturality of the pair sequence yields $\partial(f_{\ast}[M,\partial M])=f_{\ast}[\partial M]$ and if $M$ is closed, this is zero, but that's not surprising cause the element then factors through $H_n(X)$ and the composite $H_n(X)\rightarrow H_n(X,A)\rightarrow H_{n-1}(A)$ is zero.
Intuitively, If $[\sigma]\in H_n(X,A)$, then $\sigma$ is some chain in $X$ with boundary inside of $A$. Since it represents a homology class, it should be a cycle, but it need not boundary anything entirely in $A$, so it could be a nonzero representative in $H_{n-1}(A)$. In other words, if $\sigma\mapsto X$ is a chain so that its topological boundary $\partial\sigma$ be mapped entirely into $A$. This boundary represents an element of $H_{n-1}(A)$. Although this is a more or less intuitive argument, this is exactly what's happening on topology. Algebraic machinery is just make this rigorous in algebraic language.
Q. How do you see the Alexander duality?
Rmk. Alexander duality: Let $X\subset S^n$ be a submanifold. Then $H_{p}(S^n\setminus X)\simeq H^{q}(X)$ where $p+q = n-1$. Or, $H_p(\Bbb R^n\setminus X)\simeq H^q(X)$ where $p+q = n-1$.
A. One of the most important interpretation of Alexander duality is via linking numbers of submanifolds, or more generally $k$ cycles. Consider $k$-cycle $z$ in the space $X$ of dimension $k$, and an $(n-k-1)$-cycle $w$ in the complement of $\Bbb R^n$. Then $w = \partial v$ in $\Bbb R^n$ for some cycle $v$. Now take the algebraic intersection (cup product) of $z$ and $v$. This defines a bilinear pairing $H_k(X)\otimes H_{n-k-1}(\Bbb R^n\setminus X)\to\Bbb Z$, called the linking number and gives an Alexander duality. Note that the linking number here is compatible with the linking number in the classical links in $S^3$. This is just a high dimensional analog. See this answer for more geometrical interpretation of high dimensional linking number https://mathoverflow.net/a/332250/323920
Under this interpretation, in case of knot $K$ not link in $S^3$, $S^3\setminus K$ can be thought as a "dual knot" which has linking number 1 with $K$. In particular, every knot complement has $\Bbb Z$ in the first homology, generated by a single "dual unknot" (meridian) of $K$.
One can actually define linking number from Alexander duality as follows: This time we let $M^p,N^q\subset\Bbb R^n$ be closed connected oriented manifolds with dimension $p$ and $q$ and $p+q = n-1$. Then by Alexander duality, we have $\Bbb Z\simeq H^p(M)\simeq H_{q}(\Bbb R^n\setminus Z)$. Now we consider the induced map $i_*:H_q(N)\to H_q(\Bbb R^n\setminus M)$ via inclusion $N\hookrightarrow \Bbb R^n\setminus M$. This map sends the fundamental class of $N$ to some integer times the fundamental class of $H_q(\Bbb R^n\setminus M)$, obtained by the isomorphism from Alexander duality. This integer is exactly the linking number of $M$ and $N$. You will see without much difficulty that these two back and forth are compatible.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 계엄령 몇달 전부터 준비한 것 치곤 너무 허술함 0
제대로 할거면 언론사 장악부터 들어가는게 먼저 아닌가..
-
메인보내줘요 0
-
대한민국헌법 제77조 ⑤ 국회가 재적의원 과반수의 찬성으로 계엄의 해제를 요구한 때에는 대통령은 이를 해제하여야 한다. 1
대한민국헌법 제77조 ⑤ 국회가 재적의원 과반수의 찬성으로 계엄의 해제를 요구한...
-
-99% 청산엔딩 입갤 예정 ㅋㅋ
-
가상아이돌? ㅋㅋㅋㅋㅋㅋㅋ 침투력 뭐노 ㅋㅋㅋ
-
이제 항상 전쟁 대비 해야될듯
-
어어 또푸쉬 0
어어..
-
[속보] 명태균, "이재명, 이준석과 부적절한 관계...여러 번 밀회" 이거뿐이다
-
진짜 자랑스럽네요
-
여자로 사는게 우리나라에서 살기좋을거같은데 뭐 ts빔같은거 실제로없나?
-
이재명 대통령 만들기 프로젝트
-
와 나라 진짜 #~#됐네
-
하아암 2
하암
-
서술한다면??
-
죽었냐 ? 해제됐으면 됐다고 선언을 하던가 무섭게 왜그러냐
-
ㅋㅋ
-
남은 업적은 그거밖에 없는데
-
근데 거기서 계엄을 선포한거야...!
-
한동훈?
-
석열햄은 마지막에거하게말아먹고가시네
-
사실상 탄핵 못하는거 아님?
-
나 2찍남인데 0
패배 인정한다 재매이햄이 두창이만큼 빅 이벤트 터뜨려줄꺼라 기대한다 난
-
대 준 석
-
러닝타임: 168분
-
흐흐흐ㅡ
-
진짜 꿈같아요 ㅎㅎ..ㅎ.
-
자기희생 ㅋㅋㄴㅋ
-
전 보수지만 10
이건 탄핵 찬성이 맞다
-
ㅈㄴ이상한게 13
사실 민주당을 응원하든 국힘을 응원하든 사람 많이 모여있는 단톡방에서 정치성향...
-
아ㅋㅋ
-
아 .. 이거 어떻게되려나요
-
지지합니다...
-
보수로 남았다간 돌 맞을듯
-
심각성을 모르는 다수도 존재하는것같다.
-
이재명이 될거같긴한뎅
-
우리학교 2찍남 소굴인데 낼 학교 반응 궁금하네 ㅋㅋㅋ 0
교사새끼들은 싹다 좌파라 개지랄하긴할듯 ㅋㅋㅋ
-
모집정지면 ㅈ되는데 ㄹㅇ 하………
-
Wow 입갤 ㅋㅋ
-
무조건 실리고 6 9 수능 중에 무조건 나온다
-
와우
-
“전 세계에서 가장 빨리 계엄령이 철회된 나라“ 가능함?
-
상상 국회 폐쇄 및 의원 체포 군인들 장악 & 금지령 곳곳에서 항쟁 일어남 현실...
-
뭐 큰 거 준비하나? 뭐지 왜 아무것도 발표를 안해 ㅈ됨을 감지한 건가
-
무섭다
-
ㅂㅂ
-
수능날급도파민나오는중
첫번째 댓글의 주인공이 되어보세요.