[칼럼] 상수함수와 정의역 제한을 통한 다항함수 추론
게시글 주소: https://io.orbi.kr/00069133455
상수함수와 정의역 제한.pdf
칼럼 받아가실 때 좋아요 하나 부탁드려요!
매번 좋아요 눌러주시는 분들 항상 감사합니다 ㅎㅎ
안녕하세요.
최근 어떤 학생분에게 다음과 같은 질문을 받았습니다.
다항함수에서 계산을 줄이는 스킬을 어느 정도 알아야 하나요?
저는 3년 전 업로드했던 칼럼 링크를 드리며,
수능 대비할 때 다항함수와 관련된 지엽적인 공식들을 많이 암기하지 않으셔도 됩니다.
저는 삼차함수 비율관계와 제가 생각했던 이 방법 정도만 씁니다.
라고 대답 드렸어요.
여러분들에게도 이 칼럼 다시 소개 드리면 좋을 것 같아 업로드합니다.
여러분에게 항상 도움이 되고 싶습니다.
감사합니다.
독보적으로 참신한 문제와 깔끔한 100쪽의 해설
김지헌 수학 핏모의고사 (지헌모) 2025 판매중입니다!!
올해 출판한 수학 실전모의고사는 3등급 학생들에게도 큰 도움이 될 것입니다.
쉬운 4점대 문제(준킬러 문항)는 현 기조에 맞춰 올해 6월 모의고사와 유사한 난이도로 구성했습니다.
어려운 4점대 문제(킬러 문항)는 참신하지만 중요한 개념을 포함하여, 학생들에게 꼭 알려주고 싶은 내용을 담았습니다.
또한, 해설은 높은 4등급의 학생들도 충분히 이해할 수 있도록 자세하게 작성했습니다.
이 모의고사는 3등급 학생들에게도 추천할 만합니다 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
차의함수 내용인건가
인수정리를 상수함수와 엮어 자세하게 설명해둔 버젼이라고 생각하시면 될 것 같아요 ㅎㅎ
제가 뭐를 잘못 눌렀는지 이 게시물은 댓글 알림이 안옵니다..!!
질문 사항 있으시면 쪽지로 부탁드려요!! 감사합니다!
약간 최고차항을 바로 날리는 느낌이라고 생각해도 되나요?
요약을 하자면, '어떤 조건을 만족하는 삼차함수'를 구할 때 '동일한 조건을 만족하는 이차함수를 구하는 방법'을 이용할 수 있습니다. 그리고 이를 다른 예시에서도 쭉 적용해볼 수 있습니다! 추가적인 질문 사항 있으시면 쪽지 부탁드려요!
잘읽었습니다. 신선한 충격이네요 ㅎㅎ
감사합니다! 큰 도움이 되길 바라요 ㅎㅎㅎ
감사합니다
좋은 글 감사합니다
도움이 되어 기뻐요!
이제 거리곱 정도는 기본..