[칼럼] 수학과 영어의 의외의 상관관계
게시글 주소: https://io.orbi.kr/00068994693
영어에 발목 잡히는 의외의 이유
간단한 수학 문제를 내보겠습니다.
100의 절반은 몇인가요?
50의 절반은 몇인가요?
25의 절반은 몇인가요?
정답은 차례로 50, 25, 12.5입니다.
잘 따라오고 계시죠?
이제 마지막 문제입니다.
이 숫자들을 전부 더하면 몇일까요?
.
.
.
네, 87.5입니다. 어렵지 않은 계산이죠. 놀랍게도 상위권이 상위권인 이유는 50 + 25 + 12.5 = 87.5 임을 믿고 학습에 적용하기 때문입니다. 그런데 중·하위권 학생들은 이 수학적 사실을 자신의 학습에 적용하지 못합니다. 그래서 완전히 다른 길을 걷게 되죠.
50 + 25 + 12.5 = 87.5
사실, 이 수식은 제가 강조하는 공부의 대전제를 수학적으로 표현한 것뿐입니다.
공부의 대전제:
1. 아는 것과 모르는 것을 구분하고,
2. 모르는 것에 집중한다.
3. (1)~(2)를 반복한다.
상위권이 상위권인 이유는 명확합니다.
상위권은 100개를 배운 후 절반을 까먹어도 좌절하지 않습니다. 내가 까먹은 50개를 파악해서, 그 50개에 집중하죠. 50개를 집중해서 학습한 후 절반을 까먹어도 좌절하지 않습니다. 짜증이 날 순 있어도 좌절하지 않고 내가 까먹은 25개를 파악한 후 그 25개에 집중하죠. 그 이후에도 마찬가지입니다.
50 + 25 + 12.5 = 87.5
이제 이해가 가시나요? 매번 절반을 까먹는다 가정해도 공부의 대전제를 3번만 적용하면 90%에 가까운 완성도에 도달할 수 있습니다.
중·하위권을 벗어나기 어려운 이유
성장하지 못하는 학생들의 특징은 더더욱 명확합니다.
100개를 배운 후 절반을 까먹으면 거기서 스트레스를 받고 멈춰 버립니다. 스스로 멈춰 버리는데 지속해서 성장을 하면 그게 더 이상하지 않을까요?
구문 강의를 다 들었는데
아직 해석이 잘 되는 느낌이 안 들어요.
그냥 느낌대로 생각하고, 이 느낌 때문에 좌절하게 됩니다.
진지하게 묻고 싶습니다. 구문 강의를 완강하면 도대체 왜 해석이 잘 되어야만 하나요? 만약 완강만으로 그렇게 된다면, 영어 문장 해석 때문에 고통받는 학생들이 과연 존재할까요?
구문 강의 완강은 구문 학습의 완료를 의미하지 않습니다. 오히려 시작을 의미하죠. 즉, 대부분의 중·하위권들이 시작하자마자 좌절하는 학생들인 셈입니다. 단호하게 말할 수 있습니다. 이런 학생들은 절대로, 절대로 상위권이 될 수 없습니다.
여러분이 고통받지 않았으면 좋겠습니다. 고통받지 않아도 되는 상황에서는요. 그리고 여러분이 좌절하지 않았으면 좋겠습니다. 좌절하지 않아도 되는 상황에서는 더더욱이요.
50 + 25 + 12.5 = 87.5
오늘 책상 앞에 앉으면 포스트잇을 꺼내 보세요. 그리고 이 수식을 적은 후 책상 위에 붙이세요. 분명, 도움이 될 겁니다.
똑같은 컨텐츠, 다른 성적.
상위권들은 스스로가 잘나서 성장하게 되는 것일까요? 머리가 아주 똑똑한 학생들도 더러 있지만, 온전히 ‘독학’으로만 상위권, 최상위권이 되는 경우는 극히 드뭅니다. 상위권들은 스스로 잘 학습하는 학생이기보다는, 스스로를 잘 알기에 남들에게 도움을 잘 받는 학생에 가깝습니다.
이 말을 중·하위권들의 입장에서 써보면 무시무시한 표현이 됩니다.
누구보다 도움이 필요하지만
제대로 도움을 받을 수 없는 상태의 학생들.
여러분이 학습하며 만나는 강의/교재/칼럼 모두 여러분에게 도움이 되는 컨텐츠들입니다. 그런데 정작 여러분이 제대로 도움을 받을 수 없는 상태라면, 이러한 컨텐츠들이 여러분들에게 무슨 소용이 있을까요?
같은 컨텐츠로 공부해도 다른 성적을 받는 이유가 바로 여기에 있습니다. 여러분 자신을 잘 알아야 합니다. 즉, 아는 것과 모르는 것을 구분할 수 있어야 합니다.
많은 학생들이 너무나도 당연한 이 한 가지를 사실을 놓치고 있기에 도움을 받을 수많은 기회를 놓칩니다. 도움이 필요한 순간에 적절한 도움을 받지 못하면 답답함을 느끼다 포기해 버릴 확률이 높습니다.
이 칼럼을 끝까지 읽은 여러분들은 부디 그러지 않았으면 하는 마음입니다. 그래서 다시 한번 권해드립니다.
50 + 25 + 12.5 = 87.5
포스트잇을 꺼내 보세요. 그리고 이 수식을 적은 후 책상 위에 붙여 보세요.
남은 기간 분명, 도움이 될 겁니다.
이번 한 주도 수고 많으셨어요 :)
0 XDK (+1,000)
-
1,000
-
성동격서라는 말도 있는데 지금 이렇게 소란스럽게 이목을 끌고 뒤에서 비밀스럽게...
-
시립대 낮과 불가능할까요…
-
연애 하고싶다
-
몰에서 막히네 4
에휴 ㅋㅋㅋ 수학은 수학의 정석으로 수2까지 독학했는데 화학은 쉽지 않음+에이징...
-
진짜 생각없이 진행했다가 실패한거에요? 가만히 있으면 오늘내일중으로 탄핵인데 그냥 가만히 있어요?
-
돌아올 수 없는 강을 건넜어. 잘가라
-
북한같은데라도 갔나
-
롤이나할까
-
잠수탄거 뭐임
-
난 중학교때 좋아하던 애가 자기는 의사가 멋있다고 의사랑 결혼할거라 해서 바로 일반고 진학함 ㅋㅋㅋ
-
교과서에서만 보던 계엄철폐 독재타도를 라이브로 보다니 참,,, 티비로만 봐도...
-
빠르네 ㄷㄷ
-
다 너때문이야 빨리 나와서 말좀해봐
-
오늘자확실해진거 2
대학가기전에나라가망하게생김ㅋㅋ 에휴시발ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
엄.. 설마 아니지? 재명이형 탈원전은 진짜 아니지
-
국무회의를 거쳐서 계엄령을 선포했다면 국정 누가 맡지? 다 내란동조인데
-
[속보] 조국혁신당 "윤 탄핵안 내일 발의…민주당과 논의 중" 1
[서울=뉴시스]조재완 기자 =
-
유엔, 한국 비상계엄 선포에 "상황 우려하며 면밀히 주시" 1
(뉴욕=연합뉴스) 이지헌 특파원 = 유엔 사무국은 3일(현지시간) 윤석열 대통령의...
-
그러면 명태균 죽었음 장난이 아니고 진짜 죽었을 거임
-
삼권분립이 망하는데 정치 괜찮은거 맞음?
-
'계엄 해제' 놓고 또 갈라진 與…친한 18명 찬성표, 친윤 불참 1
한동훈, 尹비상계엄 '위헌' 규정…野 탄핵 추진시 변수 될 수도 (서울=연합뉴스)...
-
윤석열이 뺄 이유가 있나? 어차피 방 빼도 위헌으로 탄핵엔딩일거고 자기도 나름...
-
강윤구 인강 on
-
[속보]민변, 윤 대통령 비상계엄에 “헌법소원·효력정지 가처분 신청” 1
민주사회를 위한 변호사 모임이 4일 윤석열 대통령의 비상계엄령 선포 행위에 대해...
-
자고 있어서 그럴까요
-
尹대통령, 계엄선포 전 국무회의…한총리는 회의 참석후 청사행 4
(서울=연합뉴스) 홍국기 김영신 기자 = 윤석열 대통령이 비상계엄 선포 직전...
-
[속보] 계엄군 차량, 국회 둔치주차장에서 철수 당신의 제보가 뉴스로...
-
이제 성조기 들고 시위 안하려나 ㅋㅋㅋㅋ
-
꿈 러닝타임이 너무 기네요.. 현실에서 기절했거나 많이 다친듯
-
내일 아침에 어떨지 보자
-
[서울=뉴시스] 이종희 하종민 김래현 기자 = 윤석열 대통령이 3일 늦은 저녁...
-
ㄷㄷ
-
여기서 빼면 내란죄로 체포각보임 과연 뺄까? 어차피 ㅈ된거 엎을까
-
본회의장 대신 당사에 모인 여당 의원들 “윤 대통령, 계엄 해제해달라” 1
국민의힘 의원들이 윤석열 대통령에게 국회의 계엄 해제 결의를 수용해 조속히 계엄을...
-
하나회 숙청 없었으면 진짜 80년대 였을수도.
-
추경호 "계엄 선포, 뉴스 보고 알았다…제 판단으로 표결 불참" 4
국민의힘 추경호 원내대표는 4일 윤석열 대통령의 비상계엄 선포와 관련해 "일련의...
-
니때문에 잠도 못자는 중이다
-
ㅋㄱㅋㄱㅋㄱㅋㄱㅋ
-
[속보] 민주노총 "무기한 총파업…오전 9시 광화문 집결" 2
민주노총 "무기한 총파업…오전 9시 광화문 집결"
-
TSMC 바이든 윤석열
-
“민주적으로 여겨온 한국에 충격파” 외신들 긴급 타전 2
미국 백악관은 3일 윤석열 대통령의 비상계엄령 선포에 대해 “상황을 모니터링하고...
-
[단독] 법무부 감찰관 사직서 제출 "계엄 회의 참여 못해…내란 해당" 2
▲ 윤 대통령 류혁 법무부 감찰관이 계엄 관련 논의에 참여할 수 없다며 사직서를...
-
그래서 더 가고싶은거같아
-
ㄱㅇㄷ
-
무슨 깡으로 하는거지
-
학계의 점심임
-
민주 "수방사 특임대 국회 난입해 이재명 체포·구금 시도" 4
(서울=뉴스1) 구진욱 이비슬 박소은 기자 = 더불어민주당이 국회에 진입한 수방사...
-
계엄령 수익 3
ㅋㅋ
-
롤해야징 0
흐흐흫
강의 들으면 거의 30~40%는 날아가서 지능차이가 이런걸까 싶었는데 이 글 보니까 너무 자연스러운 현상이었단 걸 알았어요 감사합니다 이렇게 논리적으로 설득해서 동기부여를 주는 글을 첨이네요
이성적 사고훈련!을 큰 줄기로 해서 멘탈에 도움이 되는 여러 칼럼들을 집필하고 있습니다.
도움이 되었다니 기쁘네요ㅎㅎ 응원하겠습니다! 앞으로도 잘 부탁드려요.
ㅎㅎ 따뜻한 세상을 위해 저만의 방식으로 싱글벙글 한 걸음씩 더 나아가 볼게요
좋슴니다! 다음주 칼럼 제목은
빠나나챠챠샘의 한마디로 부탁드립니다
Sum(½)^x 를 계산해보니
최초로 98%이상이 되려면
6번 반복하면 되네요
6번만 보면 98%이상의 내용을 알게 된다니 이거완전
럭키☆비키잖아 ?
뭘 알고 모르는지, 거시적인 이해는 명확한지 (100%의 규정) 따져봐야 알 일이라
아득하니 어렵네요 언제나 열심히 해야겠지
당당하게 89.5잖아? 라고 생각하며 들어갔는데 87.5였다니.. ㅜㅜ