[지1] 별의 물리량 스킬 : 가중치 논리
게시글 주소: https://io.orbi.kr/00068609277
스킬(?)이라고 말씀드리기엔 정공법에 가깝지만 이 스킬은 이런 분들에게 효과적입니다.
1. 선지에서 묻는 것만 발췌해서 푸는 것이 불가능한 사람
2. 풀이의 유연성이 부족하여 모든 문항을 같은 방식으로 풀고 싶은 사람
우선 가중치 논리의 기본 구조는 다음과 같습니다.
1) 어차피 다 상댓값이다.
지1 과정에서 출제되는 문제들은 정량적인 광도를 구하는 것이 아니기 때문에, 결국 각 물리량에 대해
'(어느 별)이 (어느 별)의 몇 배이다.' 식으로 나타냅니다. 이 배수 관계를 단순한 수치로 나타내자는 아이디어에서 시작합니다.
2) T4 가중치와 R2 가중치, 광도 가중치의 설정 > 자료의 단순화
광도는 여러 가지 물리량과 비례 관계를 가집니다.
그러나, 표면온도(네제곱에 비례), 반지름(제곱에 비례), 복사 에너지를 최대로 방출하는 파장(반비례), 절대 등급(1등급 당 2.5배)과 같이 배수 계산 방식이 모두 다르기 때문에 계산할 때에 매우 번거롭다는 단점이 있습니다.
이 번거로운 과정을 초반부에 몰아버리고 그 이후에는 빠르게 계산을 끝내는 것이 이 스킬을 사용하는 방식입니다.
T4 가중치란 기준이 되는 표면온도를 가진 별을 'x1'로 나타냈을 때, 나머지 별들의 표면온도가 광도에 있어서 몇 배의 영향을 주는지를 xN의 형태로 나타낸 것입니다.
[230618]
별 (가)를 기준점 (x1)로 잡는다면 표면온도가 2배인 (나)는 광도에 있어서 16배 밝게 하는 영향을 미치므로 x16,
표면온도가 절반인 (라)는 광도를 1/16배로 하는 영향을 미치므로 x1/16의 T4 가중치를 부여합니다.
기준 별은 (태양=1) 또는 ((어떤 별)=1)로 지정된 경우가 아니라면 아무 별이나 지정하셔도 됩니다.
R2 가중치도 마찬가지로 기준이 되는 반지름을 가진 별을 'x1'로 나타냈을 때, 나머지 별들의 반지름이 광도에 있어서 몇 배의 영향을 주는지를 xN의 형태로 나타낸 것입니다.
별 (가)를 기준점 (x1)로 잡았을 때, 정보가 주어진 별에 R2 가중치를 부여한 것입니다.
광도 가중치는 T4 가중치와 R2 가중치를 곱한 값입니다.
T4 가중치와 R2 가중치가 모두 공개된 별인 (가), (라)는 두 수치를 곱하여 광도 가중치를 산출하였고,
두 수치가 모두 공개되지는 않았지만 절대등급이 주어진 별은 배수 관계를 사용하여 가중치를 도출하였습니다.
(나)와 (다)는 절대등급이 x1의 광도 가중치를 가지는 (가)보다 각각 5등급, 10등급 작습니다.
따라서, 각각 x10^2와 x10^4의 광도 가중치를 부여합니다.
이제 광도 가중치를 만족하려면 T4 가중치와 R2 가중치가 몇이어야 하는지를 역으로 산출합니다.
(나)는 x16과 x?(R2 가중치)가 곱해져 x100이 된 것이므로 R2 가중치는 100/16(=25/4)입니다.
(다)는 x?(T4 가중치)와 x10^4가 곱해져 x10^4이 된 것이므로 T4 가중치는 x1입니다.
(라)는 광도 가중치가 (가)와 동일하므로 광도가 같습니다.
이를 이용하면 미공개된 정량적 정보도 모두 산출이 가능합니다.
이제 선지를 해결하겠습니다.
1. ㉠은 25이다. (X, 2.5입니다.)
2. (가)의 분광형은 M형에 해당한다. (X, 단순 개념 선지입니다.)
3. 복사 에너지를 최대로 방출하는 파장은 (다)가 (가)보다 길다. (X, 표면온도가 같으므로 파장의 길이도 같습니다.)
4. 단위 시간당 방출하는 복사 에너지양은 (나)가 (라)보다 많다. (O, (나)는 x10^2이고 (라)는 x1입니다.)
5. (가)와 같은 별 10000개로 구성된 성단의 절대 등급은 (라)의 절대 등급과 같다.
(X, (가)와 (라)는 광도가 같습니다.)
하나의 문항에 더 적용해보겠습니다.
[240914]
1단계: T4 가중치와 R2 가중치 설정
(태양=1)로 주어졌으므로 태양을 x1로 설정하겠습니다. 기준점을 잡고 가중치를 표기합니다.
2단계. 광도 가중치 산출
두 가중치를 곱해서 광도 가중치를 산출합니다.
두 가중치가 없다면 절대 등급을 활용하여 산출할 수 있는 것을 산출합니다.
3단계. 역산출, 정량적 수치 계산
광도 가중치를 활용하여 T, R 가중치를 역산출합니다.
가중치들을 이용하여 표면 온도와 반지름, 절대등급도 계산합니다.
이제 선지를 판단합니다.
ㄱ. ㉠은 400이다. (O)
ㄴ. 복사 에너지를 최대로 방출하는 파장은 (나)가 (다)의 1/2배보다 길다.
(X, 파장은 (나)가 (다)의 1/루트5 배입니다. 이는 1/2배보다 짧습니다.)
ㄷ. 절대 등급은 (다)가 태양보다 크다. (O, 태양은 x1, (다)는 x16입니다.)
별의 물리량 단원에서 계산 실수를 줄이는 데 도움이 되셨기를 바랍니다. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
라이엇에서 하는거라고요 님들아
-
이거 사칭임? 5
뭔 교통법규위반인지 모르겠고 원래 정부24가 저 전화번호로 전송함?
-
요새 좀 느리네
-
탈오르비 5
홍대 안될것같아서 걍 마음을 내려놓고 다른 대학 가서 반수나 하렵니다 다들안녕…...
-
실시간으로 오르는중
-
흐아아 귀찮아서 3일 째 1일 1식 중쌀은 아예 안 먹음
-
아침밥 0
바나나하나랑 단백질음료...
-
작년엔 정법사문이었고 정법은 1틀 2라 그대로 할 생각인데 사문은 4 떠서 바꿔야...
-
째깍째각
-
뭐가 있을까요?
-
추합되기전에 최초합한 학교 등록을 했다가 포기해야하나요? 3
제목 그대로 최초합한 학교가있고 지금은 예비고 추합예정인 학교가 있는데 일단...
-
제발 0
제발,,,
-
영어 개씹불vs개씹물 12
뭐가 더 나음? 전자:1등급+2등급 인원 1.5% 후자:만점자 17%
-
오르비 첫 글입니다 13
빵굽습니다 으흐흐
-
감사합니다.
-
동대구역 가는중 전한길집회 가신다해서 따라 가는중
-
오늘은꼼작도못하겟다
-
인스타 고자라서 4
스토리를 올렸는데 누가 봤는지도 모르겟네..
-
김준이 피트하다가 피트 사라져서 수능판 온거임 피트 있었으면 김준 수능판 안와서...
-
진지하게 주말 하루 빼고 주 6일 순공 10시간은 진짜 대단한게 맞음. 이걸...
-
5시에 자서 지금 일어남 9시간을 자네;
-
이 미친놈
-
다군 국민대 법학부 19명 모집인데 지원자 수 225명이고 예비는 58번 받았어요....
-
옯스타에 스토리로 올릴게요 히히
-
닉변 쿨 거의 돌았는데 10
닉변할거 추천받아요
-
비문학 누구는 예상하면서 읽으라하고, 누구는 자기생각 배제하라하고 19
어쩌다 공부의왕도에 현역때부터 항상 명문대갈 성적됐는데 정작 비문학하나 때문에...
-
국어 소신발언 0
국어 싫어 독서든 문학이든 화작이든 언매든 다 싫어
-
손들어 1
손 든 채로 발도 들어
-
과기대에서 케임브리지, 옥스퍼드 그리고 모교 교수까지 14
24년에 기계공에서 옥스퍼드 박사로 간 과기대학생이 있었는데 msde에서도 있었네요...
-
요즘 날씨 1
굿
-
왜 나만 뱃지가
-
진짜 내가 본 애 중에서 가장 잘생긴 애인듯 쥰내 잘생김..
-
7시까지 숨만쉬고 공부할거야
-
중앙대 약학대학 신입생 카페 가입 안내 안녕하세요, 중앙대학교 약학대학 제 41대...
-
ㄹㅇ
-
순수하게 뱃지 중 무쌩김
-
지금 71임 65까지 뺄라거
-
고대 장학 6
캬!
-
물리 질문 0
일정한 속력으로 물체를 위로 들어올리면 알짜힘이 0인가요?
-
칼럼주제추천좀 17
국어는 내가 풀이법을 몰라서 못쓰겠더라 화2는 어나클미만잡이고 수학 생2 중에...
-
AI가 의학, 의료, 약학 분야도 1년 안에 정복할 듯 합니다 4
일종의 커밍아웃(?)을 해야겠군요. 제가 여태 제 지인이자 근처에 있다고 하던...
-
저는 설의입니다 14
아임 쏘리 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
극단적 예시긴 하지만 저는 상위 1퍼 찍고 의대 갔지만 지금 그냥 고졸 무직 백수가...
-
전체에서 3개 틀리고 땄는데 이제는 저능아 다 됐노.
-
나같은사람 있음??
-
백지복습법 1
어느수준으로 해야됨 개념을 완벽히 베끼는느낌으로..? 키워드정도는 생각이 나는데...
-
2032년 소행성 충돌 위험 2.2%로 상승…지구 방위 논의 시작되나 8
2024년 12월27일 처음으로 발견된 소행성 2024 YR4의 지구 충돌 확률이...
-
시대인재, 종로학원 계열 초·중교육 전문 ‘하늘교육’ 인수 7
서울 대치동 유명 입시학원인 시대인재가 종로학원 계열사인 초중등교육 전문업체...
-
뒤늦은인증 애매하게 한번 놓치니까 어차피 1학년땐 영어시험 다시 준비할일이...
웅웅와웅