Farewell[1] : 초전도치
게시글 주소: https://io.orbi.kr/00066251424
약간의 변심으로, 간단한데 임팩트 있는 스킬 뿌려 놓고 가겠습니다. 은퇴선물..?
제가 풀이 칼럼을 올리지 않은 시점부터 만든게 많은데, 다 끌어안고 가려고 했다만, 저한테 무슨 느낌의 스킬들이 있었는지 적는것도 나쁘지 않을 것 같아서요. 다 계산을 최대한 쉽고 빠르게 하는 방법론이었어요. 이 스킬은 과외 수업 도중 발견한 스킬로, 이름도 그 수업하던 학생이 이렇게 하자고 했습니다.
뭐 아무튼, length(Farewell)=3으로, 다음 글이 마지막 글입니다.
이걸 원래 쓰는 분이 계셨을수도 있고 아닐수도 있고.. 뭐 아무튼, 이제는 제가 글을 올려버렸으니, 산화수에서 산화수법으로 풀어야 하는 문제에 한해서 이렇게 풀지 않으면 손해가 생길겁니다. 원래 이렇게 풀던 분이 있던 없던, 이 풀이도 공론화가 된 풀이는 아닌 것 같기 때문에..
앞으로 이 풀이를 보면 어 초전도치 아니냐? 해주시면 감사하겠습니다.
중요한 부분이 있는데요,
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
이 방법은 초전도체입니다.
전하량 보존으로 풀 수 있는 산화수 문제의 경우 이 스킬을 사용하면, 전하량 보존을 사용했을때보다 계산량이 같거나 아주약간 큽니다.
이것만으로도 좋긴 합니다. 보통 전하량 보존이 너무 유리하거든요. 산화수법이 유리해 보이는데? 싶었는데 알고보니 전하량 보존이 더 유리했으면 지옥의 계산을 경험하신 학생들이 많을겁니다.
이해하기 쉬운 내용이니, 문제 하나로 끝내겠습니다.
그 전에 간단한 개념 설명을 하겠습니다.
우선 산화수법을 우리가 어떻게 사용하는지 봅시다.
산화수가 변화하는걸 화살표로 표현하고, 원자 A, B가 산화환원 반응에 참여한다고 생각합시다.
그럼 다음과 같이 표기할 수 있을겁니다. 다음 상황은, 원자 A는 산화수가 -1에서 3이 되고, 원자 B는 산화수가 4에서 2가 되는 상황입니다. 그러면 산화수와 계수를 맞추면...
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이렇게 표시할 수 있겠죠.
바로 일반화 들어갑니다.
A: a -> b (x m)
B: c -> d (x n)
이런 산화수 변화 상황이 있다고 합시다. 이 식이 성립하려면
n(c-d) = m(b-a) 가 성립해야 할 겁니다. (산화 환원 여부를 몰라도 부호만 반대면 되겠죠?)
전개합니다.
ma + nc = mb + nd
이 꼴이 나오는데요, 다시 위의 예시를 들고와서 이게 뭔 뜻인지 살펴보면..
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
일반적으로 알려진 방법 대신,
-1 x 2 + 4 x 4 = 3 x 2 + 2 x 4
이런 식으로 왼쪽끼리 곱해서 더하고, 오른쪽끼리 곱해서 더하고.. 를 확인하는 식으로도 산화수 매칭이 성립하는지 확인할 수 있습니다.
일단 이것만 보면 별거 아닌데요..
이항이 가능합니다.
(이래서 이름이 초전도치)
뭔 소리냐면
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이걸 A쪽은 -1을 이항하고, B쪽은 2를 이항합니다.
A: 0 -> 4 (x2)
B : 2 -> 0 (x4)
이러면 암산으로도, 이 산화수 매칭이 성립한다는게 확인이 가능하네요.
뭐 아직도 별거 아닌것 같습니다. 이 스킬은 문자가 포함되어 있을 때 그 진국이 나오는데..
이 문항 하나로 끝내고, 여러분들이 연습을 해 주시면 될 것 같습니다.
이 문제가 대표적인 "산화수법이 유리한 문제"인데요,
두번째 조건과 반응식에서 Y의 산화수를 확인하면 우선 다음과 같이 표현할 수 있습니다.
X : ?(m으로 표현됨) -> +n (x1)
Y : +n-1 -> +n (x3)
그리고 세번째 조건을 사용하면 다음과 같이 산화수 변화를 표현할 수 있습니다.
X : +3(n-1) -> +n (x1)
Y : +n-1 -> +n (x3)
여기서 한번 암산으로 어떻게 이항 하면 이쁘게 풀릴지 생각 해 보시는걸 추천드립니다.
(스포방지용 간격)
왼쪽에 n, 오른쪽에 상수를 몰아주는 편이 제일 좋습니다. 이러면 추가 이항이 안 생깁니다. 다음과 같이요.
X : 2n -> 3 (x1)
Y : 0 -> 1 (x3)
이제 (물론 암산으로 충분하지만)
2n x 1 + 0 x 3 = 3 x 1 + 1 x 3
이므로 n = 3입니다.
축하합니다. 이제 여러분들은 231114와 그 강화형 문제들을 암산으로 푸실 수 있습니다. 물론 굳이 암산으로 할 필요는 없고 위 처럼 정형화된 틀에서 이항시켜서 문제를 푸시면 됩니다.
한번 N제를 꺼내서 산화수법 문제를 풀어보면 231114보다 체감상 차이가 더 심할겁니다.
꼭 체화하고 쓰시길 바랍니다. 알고 모르고 시간차가 꽤 납니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
혹시 실패할시 계획이 다들 어떻게 되시나요? 전과재수? 그냥졸업?
-
ㅇㅂㄱ 1
-
회계학과 0
팀플많음??
-
호형훈제 수강생이고 회원가입 하려고 보니까 학생 코드 입력하라는데 학생 코드 어딧음?
-
nvidia가 뭔지도 모르고 관심도 없는 수험생이 나 경영경제갈거요 나 반도체갈거요...
-
장수생임...
-
등급만 보나요 생기부도 보나요?
-
제가 요즘 헬스를 하는데 자세가 이상한지 승모근도 같이.. 생기더라구요 이거 자세...
-
뭐 해야될까요.. ㅜㅜ 확통 사탐 한의대 인원 엄청 적어졌던데...
-
윤사라는 과목을 하면서 선대의 훌륭한 인간이 어떻게 생각을 해왔고 나 또한 어떻게...
-
오른쪽으로 괴고 잤는데 일어나니깐 오른팔에 힘이 안들어가는 정도가 아니라 덜렁...
-
수시 정시 갈드컵 하는 동안 세상은 미친듯이 빠르게 변화하는중 원서 다 썼다고...
-
아는 사람 답 부탁
-
이미 재수해서 삼반수 할까 고민중 국어 백분위94(커리어 하이 보통 2등급 초반...
-
공통 및 미적분 실전개념 거의 모릅니다 고2모의고사는 거의 백분위99뜹니다 고3꺼도...
-
잊은 줄 알았는데 꿈에 나와요 일하러 가야하는데 하
-
시발
-
작년이나 제작년 케이스 아시는 분 없을까요..
-
연세대 정시에서 내신 반영한다던데 내신 버리고 정시 공부만 해서 6점대입니다 연세대...
-
둘다중고 2019년 맥북에어 vs 갤럭시탭 s8 sn-x706 뭐택함 9
전자는 노트북 맥북 인데 2019년도 맥북에어....상태는 최상급 후자는 갤럭시탭...
-
솔직히 중경외시 목표면 갓반고도 좋은 거 같아요... 6
이번 졸업생들 입시 결과를 잘은 안 봤지만 그래도 수시로 서성한 20명 넘게...
-
영재고면 영재고고 자사고면 자사고고 일반고면 일반고지 요즘애들이상한말참많이만드네
-
비교내신 1
적용대상이면 불리한건가요??? 수능성적으로 반영한다는데
-
전교생이 노는분위긴데 3년간 혼자 꿋꿋하게 공부한다는게 18
정말 그렇게 쉬운일일까요? 그리고 ㅈ반고여도 한과목원툴 퍼거들이 존재하지 않는다는...
-
ㅇㅂㄱ 8
-
아 대학 좀 보내달라고
-
확통런한 미적러 입니다. 공통 14 21 22 틀이고 미적 27 28 29 30...
-
배고프다 0
진짜 ㅋㅋ
-
애초에 정시에는 수시다떨어져서 강제로 정시로 가는애들도 수두룩한데 얘네도...
-
불가능이라고보내면 안가도되죠?
-
고1 ~ 고3까지 모의고사 12개 + 수능 13연속 1등급이었지만 대부분의 모고...
-
너무 쫄린다 2
설마 f를 받진 않겠지…
-
나만 시간이 멈춘 느낌
-
쩝 0
조용하니 재미가 없고만
-
언제??
-
나만 튕겼음? 3
5분 정도 튕겼는데
-
내가 왔다 9
다들 잘 지냈습니까
-
깨있는 사람 1
생존신고 하고가
-
젠장못잤어 2
크아악 버스에서자야겠다
-
헉 1
헉
-
ㅁㅊㅎㄱ ㅅㅍ ㅎㄴㅈ
-
엄 6
um
-
준 0
june
-
식 0
sick
-
쎄하네 4
하
-
고1까지 내신 좋았는데 고2때 완전히 내신 망치고 고3때 정시로 튼 입장으로써 1도...
-
ㅠ
-
그렇게...무한N수의길로
존경합니다 논화님 바로 개추 와바박 박았습니다
Goat...
ㅅㅂ 화학은 이런것까지 해야하는구나 역시 물리가 답이네
물리나 화학이나..
역시 수능 화학은
이런 기괴한거까지해야하나
잉 진짜 쉬운데 걍 이항하고 곱하면 끝나니깐..
화2 칼럼도 부탁드립니다
쉽고좋은데 댓글공작오지네요 저런거때문에 회학선택자 줄어드는거임
지금까지 올린 스킬중에 제일 쉬움ㅇㅇ...
그러면 화학이 ㅈㄴ어려워서 하면 안되는 과목같잖아요;
초전도치야 고마워!
진짜신기하네요
처음엔 어 은근 복잡하지 않나? 싶었는데 이항이 되는게 진짜 괜찮네요 좋은 스킬인듯 ㅎㅎ
초전도치야고마워
이게 개쓸데없는 지엽스킬처럼 느껴진다면 기출/n제 학습을 안해본게아닐까요
이거보다 쉽게 설명할 수 있는 방법도 없고 적용 방법도 간단하고 여타 강사들마냥 스킬 사용 조건 대충 규정해놓은 것도 아니고 스킬 사용시에 유의미한 시간절약이 가능하고
원래 과탐 영역에서의 스킬이라는 게 “훈련되면 특정 상황에서 무지성으로 적용”해서 시간을 절약할 수 있기 때문에 의미가 있는 것인데(평소에 사고력을 사용해서 푸는 데 걸리던 시간을 절약할 수 있으므로) 그 의미와 필요성에 대해 스스로 생각을 안 해보는 사람들이 생각보다 많음
미지수가 있더라도 이항한 결과를 적어서 세로로 계산하는 것보다 산화수 차를 바로 계산하는게 더 빠르지 않나요..? 위 상황에서도 산화수 차가 2n-3, 1인게 바로 보이고요..
저문제가 쉬워서 그럼