[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
게시글 주소: https://io.orbi.kr/00065891419
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
docs.orbi.kr/docs/10913/" rel="noopener noreferrer" target="_blank">"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
군입대하고 신병휴가를 수능에 맞춰서 나가는거지 이론상 완벽할지도
-
연리 65.7%가 여러분을 기다립니다
-
션티 풀커리 0
션티쌤으로 시작하면 풀커리 타는 게 좋나요?
-
얼버기 1
이정도면얼버기.
-
밤샜음 9
자야하는데
-
여캐일러 투척 6
화2 정복 8일차
-
잇올도착 4
투데이 스타트
-
캬캬캬
-
ㅋㄷ 3피스 팔아요?
-
과외때메 수학,생명은 공부할건데 화학도 해야되나 화학은 과외 수요가 없을거 같은데
-
현강 토리님들 곧 오리진 끝나고 본편가는데 필기도구 뭐뭐 쓰나요?? 알려주시면 천사 ㅠㅠㅠㅠㅠ
-
막히고 숨이 잘 안쉬어지는데 (ㄹㅇ임) 비정상임? 악깡버 하면서 스스로...
-
지구과학 질문 1
반수할건데 아직 확정되지는 않아서 메가패스는 안샀는데 지구과학 독학 가능함?...
-
최초합 가능한가여…?
-
인하대 조발 0
하루라도 땡기면 안되냐
-
춥다 추워 2
-
얼버기 7
한시간 정도 잤네용
-
오야스미 2
네루!
-
ㅈㄱㄴ 현역 기공붙엇는데 반수생각중이라
-
얼마만이냐
-
돌아오기까지가~~
-
얼버기 엄벌기 4
피고내
-
싸펑 엣지러너 11
대충 먼내용이죠
-
내가 텍스트로 읽는게 더 좋아서 그런지는 모르게ㅛ는데 웬만한 실전개념서 중에는...
-
김승리 질문 0
김승리쌤 문학이 말이 많던데 어떤가요? 저는 왜 그런지 이유를 확실 하게 파악해야...
-
사탐 인강 6
과탐 보다가 이번에 사문으로 사탐런하려고 하는데 메가말고 EBS 수능개념 강의만...
-
잇올러 기상 10
완료
-
나 스스로가 타인에 비해 보잘 것 없이 느껴질때는 화도 많고.. 미워하거나 맘에...
-
연애 ㄱㄴ? 걸리면 쫒겨나나요?
-
얼버기 19
-
내가 생각하는 양의 이미지가 아니네 몸이 무슨..
-
다들 무시하는거 맘아프다.. ㅜㅜ 수능 좀 망해서 가긴 해도 경희대 좋아해서 난...
-
22학번 중대 경영을 현역으로 입학했습니다. 그러다 반수를 하고 실패해서 군입대를...
-
아가기상 6
모두 안뇽
-
.
-
풀고나니간 4
원래 줠라 화려한 풀이로 기억햇는데 이게 이거박에 안되? 이러다가 시간 다박아서...
-
무슨 1강부터 계산을 시키네 이거 뭐하는 과목임
-
이 풀이는 할게 산더미처럼 쌓여있지만 새벽에 미쳐서 밤을 새버린 대학생의 똥정도로...
-
내 인생이니까 맘대로 살라고 하시는 것 같은 학생 때는 조금은 뭐라 하셨어서 가끔 싸웠었는ㄷㅔ
-
인간주제에..
-
유도하고싶은데
-
히히 똥 히히 1
히히
-
해설써봄
-
수드라로 태어났으니 공부라도 열심히 해야지 ㅅㅂ...
-
얼버기 2
사실 안 잤어용ㅋ
-
얼버기 1
인 줄 알았으나 아직 안 잠
-
트럼프 행정명령으로 이재명은 오토 윔비어법으로 처벌할거고 부정선거 또한 밝혀질 거임...
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!