항상 f'=0인 지점에서 극대/극소 인건가요?
게시글 주소: https://io.orbi.kr/00063973143
안녕하세요 수2공부하는 고2인데 궁금한점이 생겨서 질문드려요..... 제가 배우디로는 연속인 함수에 대해 함수의 증감이 바뀌는 다시말해 f'의 부호가 바뀌는 지점이 극대/극소라고 들었어요(여기까지는 이해가 가요) 그런데 왜 미분가능한 함수면 f'=0인 지점이 극점인가요? f'이 연속함수라면 사잇값정리에 따라서 부호가 바뀌려면 f'(c)=0인 지점이 반드시 존재하니 성립하지만 미분가능이라는게 f'값이 존재만 하면 되잖아요? 그러니 도함수가 불연속일수도 있지않나요? 그러면 사잇값정리를 못쓰니 항상 f'=0인 지점이 극점이라고 할수는 없지않나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기록 보니까 싱겁게 끝났구만
-
진실되게 투표한자는 올해 원하는 곳 갑니다... 수능 현장에서 생명과학1 응시한...
-
집도착 3
얼버잠 오야스미
-
짖짜임
-
그건 사실이라는 거임뇨
-
핸드폰으로는 안되나요?? 여행 중이라 pc로 확인하기가 어려울거 같은데..
-
과외가 ㅈ도 안구해지네
-
옷을 사야하는데 0
살빼고사야지 딱10kg빼고 사도록하겟음뇨
-
국어는 다맞은것 같은데 수학을 1문제를 완벽하게 푼 문제가 없는데 이거 가능성 있음?
-
화미영화생 백분위 중간3 100 1 99 100 이면 한양대 반도체 갈 수 있을까요?
-
여러분의견 ㄱㄱ
-
청바지 니트 맨투맨 삼
-
스승님께 예의를 갖춰라
-
미적 2컷 0
공2 미3 틀 80
-
중딩때 반년정도 하다가 학업이슈도 때려쳤는데 10-20이 국룰임뇨?
-
평가원 게이야 3
이미 채점 다하고 한쪽 구석에 방치해둔 거 다 안다 빨리 내놔라
-
나 응애. 에요
-
근데 3개 글이 결이 다 다른데...
-
뭐가 ㅈ같을까
-
에듀셀파 여학생 기숙 갔었는뎅 .. 너무 좋은데.. 질답이 좀 불편... 좋은 곳...
-
[고려대합격자를 위한 꿀팁][사전공지]_고대 합격자를 위한 장학금편 0
안녕하세요. 고대에 처음 발을 딛는 우리 '아기호랑이들'을 위해, 2024년...
-
빨리와
-
스나는 그럼 trg-21인가요
-
10분위도 지원가능한 1학년때 꼭 지원해야되는 장학금 7
대통령과학장학금 이공계우수장학금 인문100년장학금(문과) 윤세영스칼라십...
-
그건 사실이란거임뇨
-
가채점보다 실채점이 더 후할 수도 있나요? 아니면 56789등급도 실채점이 점수 더 내려가나요?
-
수2를 쎈만했는데 12
시발점듀 복습하는겸 빠르게 해야할까요?
-
[사전공지]고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 0
아직 합격자 발표일 이전이지만, 미리 공유 드릴게요!! 고려대 25학번 합격자를...
-
한 2박3일로
-
이게뭐노.....
-
휴지 한칸으로 일회용 코트임뇨
-
공군 컷 99 2
워드프로세서+기본 64 진로설계 1 한국사 한국어 능검 2 봉사/헌혈 8 텝스 2...
-
입김 나오네 3
춥긴 춥다
-
3급... 10
부동시로는공익을못받는 더러운나라
-
작년 컷이랑 비슷한 수준이라 올해 진입했는데 최저가 불안해서 3합 5/3합 6...
-
수12 해도될까요..! 지금 풀어봤는데 사점자리 두세개 빼고 다 모르겠어서요.....
-
미치겟뇨
-
독학gg 모타겟쏘
-
유저 상당수가 미필 남성인 사이트, 오르비. 그러나 실상은 국방부와 긴밀한...
-
계단 오르기도 쉽지 않음뇨..
-
기하임. . .
-
키작남 여자들이 싫어잔뇨..
-
짜파궤리 무롤림 0
-
기하 6
내년 공대 졸업예정인데 메디컬 목표로 수능 칠 계획..!! 언매 생 지 이렇게...
-
갓반고 3점대는 일반ㅂㅗ다 더 빡쎄죠?
-
기존에 지1을 하고 있어서 화1을 다른과목으로 바꿀려고 하는데 추천 해주세요. 제가...
-
옮밍아웃하고 싶다
-
Team 생2 홧팅!
-
본인이 찐 I 내향형이고 사회성 부족해서 회사생활 힘들거나 하는 경우 제외하고...
부호가바뀌면 극점임 하지만 연속함수니까 부호가바뀔때 0을지날수밖에없죠
답글 감사합니다 연속함수라는건 도함수 말씀하시는거죠? 그럼 도함수가 불연속인 경우는 없는건가요?
도함수가 불연속인 경우도 존재합니다 참고로 수2에서다루는 다항함수는 미분가능한 연속함수입니다 도함수도 미분가능하고 연속입니다
에초에 미분가능한 함수면 연속이구요.
답변 감사드립니당
미분가능한데 도함수가 불연속인 경우는 있어요. 수2 범위 밖이긴 한데 대표적으로 x²sin(1/x)가 그럼
근데 미분가능한 함수에서 극점인데 미분계수가 0이 아닐 수는 없을 것 같은데
'증감이 바뀌는' 이게 대부분의 경우에는 맞긴 한데..
극대 극소의 정의는 그게 아니긴 하거든요
x²sin²(1/x)의 경우에는 x=0에서 극소이고, 미분계수 0이고, 도함수 불연속일 것 같음 귀찮아서 검증은 생략..
sin(1/x) 이런 류의 함수들은 x가 0으로 갈수록 1/x가 점점 커지잖아요? 무한히? 그래서 사인값이 계속 요동친다고 생각하시면 됨 그래서 증감이 무한히 바뀌어요
평소에 만나는 함수들은 x=a에서 극점이다 할 때
어떤 아주 작은 양수 h를 설정해서, 열린 구간 (a-h, a)에서는 감소고 (a, a+h)에서는 증가다, 이렇게 할 수 있잖아요
근데 저 sin(1/x) 같은 애들은 그런 열린 구간을 잡을 수가 없어요
x=a에서 극소라는 것의 정의는 x=a를 포함하는 열린 구간을 잡을 수 있다, 어떤 열린 구간이나면 그 구간 내의 모든 x에 대해 f(x)>=f(a) 이거임
도함수가 불연속인데 도함수의 f'값이 그지점에서 있는경우는 존재할수가없는케이스입니다. 도함수f'값이 존재하면 원함수가 미분가능하고 도함수의 f'지점주변도 다 연속이라생각하시면됩니다. 원함수가 미분가능일때 도함수가 불연속이면서 도함수의 그지점함숫값이 존재하는경우는 없다고 생각하시면됩니다. 그리고 논외로 f'=0이라해서 항상 극대/극소는 아닙니다. y=x^3보시면 원점에서 극대,극소아니고 f'(0)=0입니다
갑사합니다
변곡점일 수도 있어요!
도함수 부호변화로 판단하세요
답변 감사합니당
그리고 댓글 반응을 보니 질문을 좀 더 정돈해서 쓰시는 게 좋을 것 같아요.
제가 생각하기로는 작성자분이 궁금해하시는 것은, '미분가능한 함수는 극점에서 항상 미분계수가 0인가?'인 것 같거든요? 근데 댓글에서는 '미분가능한 함수에서 미분계수가 0이면 항상 극점인가?' 이걸로 이해하신 분들이 계시는 것 같아요. 만약 후자를 궁금해하신 거라면 제가 잘못 읽은 것이구요. 아무튼 간에 ~이면, 항상, 이런 말들의 포함관계를 잘 생각하고 질문을 하셔야 소통이 잘 될 것 같아요.
넵 담부터는 더 신경써서 작성하겠ㅅ슴니다 답변해주셔서 감사합니다