'조건문' 심화 - 기출문제의 흐름 | 어설프게 아는 것보다는 모르는 게 낫다
게시글 주소: https://io.orbi.kr/00062857411
안녕하세요. 독해와 논리를 가르치는 이해황입니다.
"□이면 △" 꼴의 조건문을 정확히 이해하는 것은 수능/PSAT/LEET 모두에서 매우 중요합니다. 조건문은 논리적 사고의 핵심 도구이기도 하며, 때로는 그 자체가 지문의 주제로 등장하기 때문입니다. 그래서 제가 그간 다양한 글과 강의를 올려왔는데, 이 글에서 기초부터 심화까지 총정리해보려고 합니다.
1. 조건문 기초: 표현법
조건문 "□이면 △"와 논리적으로 동등한 표현이 많습니다. 지문에서 다음과 같은 표현을 만나면 모두 "□이면 △"로 단순하게 환원할 수 있어야 합니다.
덧: "□가 △를 전제한다"는 □와 △가 모두 '문장'인 경우에 위 내용이 성립합니다. □가 논증인 경우는 약간 다른데, 수능 수준에서는 심각하게 알 필요가 없고, PSAT/LEET를 대비한다면 『논리개념 매뉴얼5.0』(법률저널)을 참고하기 바랍니다.
2. 조건문 기본: 추론형식
조건문 "□이면 △"는 전건긍정, 후건부정, 후건긍정, 전건부정 등의 타당하거나 부당한 추론형식과 밀접합니다. '전건긍정'이라고 하니 뭔가 괴상한 용어 같지만, 시험에도 아래와 같이 언급된 적 있습니다.
"고전 논리에서는 전건 긍정 규칙이 성립한다. 이는 “P이면 Q이다.”라는 조건문과 그것의 전건인 P가 ‘참’이라면 그것의 후건인 Q도 반드시 ‘참’이 된다는 것이다." 2018학년도 9월 모의평가 27~32번 지문
이러한 추론형식을 잘 알아두면 지문에서 선지가 추론되는지를 신속&정확하게 판단할 때 도움이 됩니다. 마침 제가 초등학생도 이해할 수 있는 수준으로 쉽게 설명한 강의가 있으니 꼭 시청해보길 바랍니다. PSAT/LEET 수험생분들도 극찬한 강의입니다.
초등학생도 이해하는 필요조건, 충분조건 | 수능/PSAT/LEET 논리학 필수개념
3. 조건문 심화: 일상적 조건문과 전통 논리학 조건문의 차이
조건문 처리가 익숙해지고 나면 많은 문제를 좀 더 간결하고 정확하게 풀 수 있게 됩니다. 그런데 가끔은 오히려 조건문에 대한 지식 때문에 문제를 틀리게 되는 경우도 발생합니다. 상위권 학생이라면 이런 경험이 다들 몇 번씩 있을 겁니다. 그래서 일부는 논리학이 수능에는 쓸모없다며 논리학 무용론을 펼치기도 하는데, 저는 섣부른 판단이라고 봅니다. 오히려 조건문에 대해 더 깊게 공부함으로써 이 문제를 해결할 수 있고, 또 더 높은 사고력에 도달할 수 있기 때문입니다.
무엇보다 독해지문에 등장하는 일상적 조건문과 논리학(주로 논리퀴즈)의 (실질) 조건문이 왜 다른 것처럼 보이는지에 대해 이미 철학자들이 열심히 논쟁해왔고, 수능/PSAT/LEET 모두에 관련 주제가 나온 적 있습니다. 또 출제되더라도 이상할 게 없으므로 그 흐름을 정리할 필요가 있습니다. 개인적으로 "논란 없는 원리"(the uncontested principle)는 강력한 출제예상 주제라고 생각합니다.
그래서 제가 테마특강에서 최대한 쉽게 정리해봤습니다.
https://class.orbi.kr/course/2436
덧: 위 강의를 듣기 전에 [무료] 반사실적 조건문과 가능세계 의미론를 수강하길 추천합니다.
위 강의를 모두 듣고 나면, 아래 지문을 하나의 흐름으로 이해할 수 있을 겁니다.
[수능] 2019학년도 수능 39~42번 지문
"다음 상황을 생각해 보자. 나는 현실에서 아침 8시에 출발하는 기차를 놓쳤고, 지각을 했으며, 내가 놓친 기차는 제시간에 목적지에 도착했다. 그리고 나는 “만약 내가 8시 기차를 탔다면, 나는 지각을 하지 않았다.”라고 주장한다. 그런데 전통 논리학에서는 “만약 A이면 B이다.”라는 형식의 명제는 A가 거짓인 경우에는 B의 참·거짓에 상관없이 참이라고 규정한다. 그럼에도 내가 만약 그 기차를 탔다면 여전히 지각을 했을 것이라고 주장하지는 않는 이유는 무엇일까?"
[LEET] 2018학년도 LEET 추리논증 15번
일상적인 조건문의 진위는 어떻게 결정되는가? 다음 예를 통해 알아보자.
K공항에서 비행기가 이륙하기 위해서는 1번 활주로와 2번 활주로 중 하나를 통해서만 가능하다. 영우는 1번 활주로가 며칠 전부터 폐쇄되어 있다는 것을 안다. 그래서 ㉠“어제 K공항에서 비행기가 이륙했다면, 1번 활주로로 이륙하지 않았다.”라고 추론한다. 경수는 2번 활주로가 며칠 전부터 폐쇄되어 있다는 것과 비행기 이륙이 1번 활주로와 2번 활주로 중 하나를 통해서만 가능하다는 것을 알고 있다. 경수는 이로부터 ㉡“어제 K공항에서 비행기가 이륙했다면, 1번 활주로로 이륙했다.”라고 추론한다.
위 예에서 영우와 경수가 사용한 정보들은 모두 참이며 영우와 경수의 추론에는 어떤 잘못도 없으므로 ㉠도 참이고 ㉡도 참이라고 결론 내릴 수 있다.
그런데 정말 ㉠과 ㉡이 둘 다 참일 수 있을까? 우리가 일상적으로 ‘A이면 B이다’라는 조건문의 진위를 파악하는 (가) 방식에 따르면, A를 참이라고 가정하고 B의 진위를 따져본다. 즉 A를 참이라고 가정할 때, B가 참으로 밝혀지면 ‘A이면 B이다’가 참이라고 판단하고, B가 거짓으로 밝혀지면 ‘A이면 B이다’가 거짓이라고 판단한다. 이에 따라 A가 참이라고 가정해 보자. 그런데 ‘B이다’와 ‘B가 아니다’ 중에 하나만 참일 수밖에 없으므로, ‘A이면 B이다’와 ‘A이면 B가 아니다’가 모두 참이라고 판단하는 것이 가능하지 않다. 그렇다면 조건문의 진위를 파악하는 이 방식에 따르면, ㉠과 ㉡ 중 최소한 하나는 참이 아니라고 결론 내려야 한다. 그러나 이는 앞의 결론과 충돌한다.
[PSAT] 2023년 5급 언어논리37번
조건문 ‘오늘이 3월 4일이면, 내일은 3월 5일이다’는 단순 명제인 ‘오늘이 3월 4일이다’와 ‘내일은 3월 5일이다’로 구성된다. 이러한 단순 명제는 그것이 사실에 대응하면 참이고, 그렇지 않으면 거짓이다. 그렇다면 이것들로 구성된 조건문의 참ㆍ거짓은 어떻게 결정될까? 보다 일반적으로 임의의 단순 명제인 A와 C로 구성된 조건문 ‘A이면 C’의 진릿값은 어떻게 결정될까?
견해 (가)에 따르면 조건문 ‘A이면 C’는 A가 참인데도 C가 거짓인 경우에 거짓이고, 그 나머지 경우에는 모두 참이다. 여기서 A가 거짓인 경우에는 C가 참이든 거짓이든 조건문은 참이 된다. 그러나 A가 거짓인 경우의 진릿값 결정 방식은 우리의 직관에 부합하지 않는 면이 있다.
견해 (나)에 따르면 조건문의 진릿값이 정해지는 방식은 ‘가능 세계’라는 개념을 이용해야 만족스럽게 제시될 수 있다. 먼저 A가 현실 세계에서 참인 경우를 생각해보자. 이 경우에는 (가)와 다를 바 없이 현실 세계에서 C가 참인지 거짓인지에 따라 조건문의 진릿값이 결정된다. 즉, C가 참이면 조건문은 참이고 C가 거짓이면 조건문은 거짓이다. 다음으로 A가 현실 세계에서 거짓인 경우를 생각해보자. 이 경우에는 A가 참인 것 외에 다른 것은 모두 현실 세계와 같은 가능 세계에서 C가 참인지 거짓인지를 판단해 보는 것이다. 만약 그 가능 세계에서 C가 참이면 조건문은 참이 되고, C가 거짓이면 조건문은 거짓이 된다. 가령 실제 3월에 누군가 “이번 달이 4월이면, 다음 달은 5월이다.”라고 말했다면, 이는 참이다. 왜냐하면 ‘이번 달은 4월이다’가 참이라는 것이 현실 세계와 다르고 그 밖의 것은 모두 현실 세계와 같은 가능 세계에서는 현실 세계처럼 4월의 다음 달은 5월일 것이기 때문이다.
덧: 그간의 질문답변 경험에 비춰보면, 어렸을 때부터 책을 많이 읽어온 상위권 학생이라면 '조건문'에 대해 어설프게 아는 것보다는 아예 모르는 게 나을 수 있습니다. 하지만 제대로 공부해둔다면, 자신의 직관이 닿지 않던 더 높은 수준까지 순식간에 도달할 수 있을 겁니다.
0 XDK (+1,000)
-
1,000
-
?
-
캬 아 그리고 토요일 포공 면접도 보러갑니다 응원받음..
-
공부에 나름 관심이 있구 수학에 관심이 있는 애들이 들어오는거니까ㅠ 인싸 아니여도...
-
대성패스 살까요 0
물리만 하려고 사는 건 손해일까요 원투 다 들으려 하는데.. 살 거면 수학도 같이 들을까요..
-
ㅜㅜㅜㅜ
-
자기도 왜 잘하는지 모름뇨 국어에 대해 진지하게 토론하는데 딱히 별 생각이 없음뇨...
-
나 18일 뒤에 입대라고.. 그래도 대부분 사단신교대인거 같던데 논산으로 하길 잘했다?
-
투자한 노력 대비 표점 및 백분위 및 등급 효율이 ㅆㄹㄱ라 그런건가요 다른 과목들도 다 그런가
-
매장행임
-
긍정적인 마인드로 357일 공부하기 4일차 오늘의 소확행 : 불닭볶음면 +...
-
15 19 31 35틀 위태 1인데 19번 이새끼는 문제도 기억 안나네 감정변화를...
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
입소 3일 된 육군 훈련병 뜀걸음 중 의식 잃고 숨져 26
(함안=연합뉴스) 김동민 기자 = 육군 훈련병이 입대 3일만에 뜀걸음 중 의식을...
-
그해 수능날 국어 ㅈ망하고 다음 수능날 나타나서 진짜 백분위 100 찍는 경우...
-
대대장이랑 사귀다가 주임원사한테 걸렷음뇨 다음날 ntr당함뇨
-
1.ebsi 기준 작수랑 정답률 비슷하거나 더 낮음 2.메가 1등급...
-
오르비에 꺼드럭대는 붕슨 한마리 저격함 ㅋㅋ 경뱃달고있던데 걍 반수생의 수치임 이정도면 ㅋㅋ
-
한살어리긴한데 좋은동기를만낫어요
-
삼수생 오늘부터 달린다 10
언매 69 미적 92 영어 2 물리1 50 지구1 48 오늘 한 공부 → → → →...
-
하 ㅅㅂ
-
확통런 0
미적 쉽게 나오면 3점 짜리는 다 맞고 28,29,30은 거의 버립니다…. 이번...
-
ㅈㄱㄴ입니다
-
47-48 묶여라..
-
아니 절평이면 좀 쉽게 내달라고요 A가 20%도 안되는게 무슨 절평임..
-
한양 인터칼리지 인문에 나오는 수학 3문제 합격하려면 3문제 다 맞아야할까요?ㅠㅠ
-
과 상관 없고 학교 높이면 어디까지 가능한가요..세종대 가능한가요?
-
다람쥐임뇨
-
본인 올해 20살이고 (고딩시절) 엄청 예쁘고 매력적인 여자학생이 있었음. . ....
-
뒤에서 음침하게 논술공부같은거 하지말고 철저하게 문학단편소설써내기로 시험보자 제발
-
메인글 존나 재밌노 ㅋㅋㅋㅋㅋ
-
나는 자연인이다 0
국어 수학 올해 수능 분석? 부터 찬찬히 해봐야지
-
아~ 나 31211이요~ 꺼드럭~ 꺼드럭~
-
떡밥 없으니까 0
바로 그냥 인터넷 막고라 열리네;
-
그게나야~ 움빠둠빠 뚜비뚜밤 불쌍하다~ 움빠둠빠 뚜비두밥
-
메가 백분위 기준 화 미 영 물1 지1 87 94 1 86 96 힘든가요 .. 제발 안정이라고해줘
-
하루에 10분 막 이렇게 정해두고 못하겠음 한 번도 안 들어간 날은 진짜 1도...
-
근데 너모 귀찮다
-
최저 3합6에서 과탐1과목이랑 과탐2과목 평균정사랑 충족률이 많이 차이날까요?
-
삼수해야하는데 ㅠㅠㅠ
-
진짜 간절합니다....
-
왤케 이 사람 말이 많음
-
과제하러 감뇨 2
11시 반에 다시 옴뇨
-
영어 71점 신이 도움
-
ㅈㄱㄴ 과 상관없음
-
난 훈련소동기로 만났음
-
시험지 답안지 제외 연습장 따로 주나요?
-
진짜임
-
사탐런치고 하루에 2시간씩 하면 수능 2가능한가….
-
막 뭐라도 되는양 오르비에서 다리 꼬는 사람들 보면 맘에 안드는데 제 성적도...
-
덕코 인출.
진짜 공부할수록 진가를 알게하는 조건문..공부
좀 아시는 분이군요 ㅎㅎ
제가 본문에서 제시한 선까지만 공부하시면 수험적으로는 충분할 거예요 :)
마지막 말 공감합니다 ㄹㅇ.. 수험생때 조건문 조금만 보고 더 헷갈리기만 해서 포기하고 대학 와서 다시 공부해보니 보는 눈이 확 트인 느낌..
그래서 제가 수험생 때부터 쉽고 제대로 이해할 수 있도록 강의를 올리고 있습니다. ㅋ
선생님 예외가 있다면 명제가 아닌가요?
예외의 존재와 명제 여부는 무관합니다. 자세히 답변하려면 '명제', '참/거짓' 등에 대해 전반적인 설명이 필요할 것 같은데, 만약 PSAT/LEET를 대비한다면 '논리개념 매뉴얼' 앞부분을 참고해주세요.
아 그냥 취미로 찾아보는데 예외가 있다면 명제가 아니다라는 주장을 봐서요..
혹시 조금 간략하게라도 설명해주실 수 있나욥?
명제는 다양한 분야에서 서로 다른 의미로 쓰입니다. 해당 문장에서는 그냥 원칙 정도로 쓰인 것 같네요. 논리학/철학에서 명제는 (보통) 문장의 내용으로 봅니다. 더 자세한 내용은 제 교재나 분석철학 교과서를 참고해주세요. (수리논리학에서는 또 명제에 대한 정의가 다릅니다.)
감사합니다!!