[Team PPL 칼럼 71호] ‘경우의 수’ 단원을 얕보지 말자
게시글 주소: https://io.orbi.kr/00062006126
우리는 중학교, 고등학교에서 적어도 두 번, 많으면 세 번까지 경우의 수를 세는 단원을 접하게 됩니다. 중학교 2학년과 고1의 수학 (하)에서 한번씩, 또 선택과목 확률과 통계에서까지 말이죠. 그런데 이때 배운 개념과 사고과정들은 실제로는 해당 단원이 아닌 곳에서도 빈번하게 쓰이고 있습니다. 합의 법칙과 곱의 법칙에 대한 내용을 정확히 이해하고, 다른 단원의 문제에 사용된 것을 통해 해당 개념의 중요성을 다시 일깨워 보는 시간을 갖도록 합시다.
# 왜 ‘더하기’인가요?
합의 법칙의 내용은 다음과 같습니다.
두 사건 A와 B가 동시에 일어나지 않을 때, 사건 A가 일어나는 경우의 수가 m, 사건 B가 일어나는 경우의 수가 n이면
(사건 A 또는 사건 B가 일어나는 경우의 수)=m+n
이다.
단순한 내용 속에서 우리가 이해해야 하는 본질은 다음과 같습니다:
두 가지 상황이 ‘동시에 일어나지 않으면’ 각각의 경우를 분리해서 구해야 한다.
보통 위의 내용을 이해하는데 어려움을 겪는 경우는 그렇게 많지 않습니다. 그런데, 문제에서 사용될 때는 이야기가 조금 달라집니다. 아래의 문제를 보시고, 이어서 설명드리겠습니다.
예시 1. 한 개의 주사위를 던질 때 나오는 눈의 수가 2 이하 또는 5 이상인 경우의 수를 구하시오.
쉽죠, 2 이하인 눈은 1, 2의 2개, 5 이상인 눈은 5, 6의 2개이므로 합쳐서 4입니다.
두 번째 예시는 어떨까요?
예시 2. 2023학년도 6월 모의평가 (공통) 12번
해당 문제는
조건 (가)에서 와 의 부호가 반대이므로 , 이어야 하는 조건을 이끌어낸 뒤,
조건 (나)에서 의 부호가 어떤지에 따라 경우를 나누어 구하는 문제입니다.
상황에 따라 계산할 식이 달라지기 때문에, 경우를 나누어 따로 구해야 할 필요성을 인지하지 않으면 문제를 제대로 풀 수 없습니다. 위의 예시 1과 같은 문제를 풀어오면서, 예시 2와 같은 문제를 풀 때 상황을 나눠서 푸는 것에 익숙해져 있다면 절댓값 같은 상황에 더 유연히 대처할 수 있지 않을까요.
# 동시에 안일어났는데요? ‘곱의 법칙’
곱의 법칙의 내용은 다음과 같습니다.
사건 A가 일어나는 경우의 수가 m, 그 각각에 대하여 사건 B가 일어나는 경우의 수가 n이면
(두 사건 A와 B가 동시에 일어나는 경우의 수)=m n
이다.
여기서는 ‘동시에 일어난다’ 라는 표현에 주목할 필요가 있겠습니다.
보통 일반적으로 이야기하는 동시라는 표현은 같은 시점에 발생하는 두 가지 일을 이야기 하지만, 여기에서 동시라는 표현은 이렇게 이해해야 합니다.
두 사건 A, B가 ‘같은 시간선상’에서 발생한다.
즉, 주사위 두 개를 동시에 던지던, 1시간의 간격을 두고 던지던, 같은 시간선상에서 두 주사위가 동시에 던져진 결과물이기 때문에, 동일한 상황으로 취급합니다.
따라서 이렇게도 해석 가능합니다.
어떤 시행의 서로 다른 m가지 결과 각각에 대하여 사건 B가 일어나는 경우의 수가 n이면,
총 경우의 수는 n을 m번 더한 것, 즉 n m이다.
우리가 곱하기를 처음 배울 때 출발한 개념과 비슷하게 이해할 수 있겠습니다. 위와 같이 이해하면, 한가지의 케이스 분리를 한 뒤 그 안에서 일어나는 또다른 케이스 분리에 대해서도 보다 쉽게 접근할 수 있을 거라 생각합니다.
뭐 가끔 이런 문제처럼 출제진까지도 생각 못한 케이스 분리가 존재할 때도 있긴 하지만요...ㅎ
예시 3. 2019년 6월 고2 모의고사 (가형) 30번
# 경우의 수를 대하는 자세는 문제풀이의 필수요건이다.
제일 단순한 실생활의 예시를 통해 수학문제를 풀 때 필요한 논리적 사고력을 키울 수 있는 단원은 분명 이 단원입니다. 실제로 출제되는 문제들 또한 미지수와 복잡한 수식들보다 일상생활에서 친숙히 볼수 있는 소재들로 구성된 문제의 비율이 가장 높기도 하고요. 해당 단원의 학습을 소홀히 하지 않고 어렸을 때 퍼즐을 풀던 감성처럼 오랫동안 고민하면서 공부하면 복잡한 문제에서도 당황하지 않고 상황을 분석할 수 있는 힘을 기를수 있을 것이라 생각합니다.
예비 고1 여러분들, 또 미적 선택을 고민중인 분들도 해당 단원만큼은 꼭 공들여 공부했음 좋겠다는 바람입니다!
칼럼 제작 | Team 수하기
제작 일자 | 2023.02.12
Team PPL Insatagram |@ppl_premium
*문의 : 오르비 혹은 인스타그램 DM
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
D-354 공부 3
-
생명69수능 112 지구69수능 132 인데 그냥 사탐런박는게답인듯
-
약대 고민 5
고려대 세종 약대, 충남대 약대 이렇게 있는데요 고려대 세종으로 가면 입실렌티도 갈...
-
허수 정시러에게 응원 좀 해주세요ㅋㅋㅋㅋ..
-
요즘 동덕여대 시위 때문에 시끄러워서 이화여대 같은 여대들한테도 영향이 있을지...
-
드릴드 내년에 풀어도 괜찮나
-
1 패스 2-5 3 -3분에1 4 15 5 6 6 3 90 7 -1 6번 서로다른...
-
수능특강 개념 6
빨리 개념끝내고싶은데 26수특 나오기 전에 25수특 인강으로 개념공부 해도 되나요?
-
카이스트는 붙었고 지사의(하위권)은 최저 맞춰서 붙을것 같은데 어딜 가는게...
-
인문: 에이어, 헤겔, 연역과 귀납 사회: 이중차분법, 기판력, 불확정 개념 과학:...
-
진짜 좆같다 1
13분만 여기서 살고싶음
-
솔크 탈출 인정해주나요?
-
끝
-
생2 ebs인강 0
생2 이주연 선생님 들으려고 하는데요 혹시 수능개념 안듣고 수능특강 넘어가도...
-
5수 9
어떻게생각함?
-
이럴때 돈쓰지
-
문과고요...세무회계,경제,미디어커뮤쪽 생각합니다 진학사에서 가천대 불합 덕성여대...
-
사람하나 살리는셈 치고 도와주라 머리 터질 것 같다 시간상으로나 요즘 메타로나...
-
요즘은 장난하는게아니라 문학이 더 어려운것같은데 독서보다
-
부산대 논술 서술할때 f(x)는 미분가능하므로 f’(x)는 연속이다 라고 씀 개...
-
밐 4
밐 밐밐밐
-
그런게는죽었습니다
-
그러합니다
-
ㅈㄱㄴ
-
크리스마스엔 1
마인크래프트를 해야지 ㅇㅇ
-
잡담 태그 꼬박꼬박 답니다
-
맨시티 닦았네? ㅋㅋㅋㅋㅋㅋㅋ
-
6문제중에 1-3틀리고 2-3 건들지도 못했는데 가망 없다고 봐야겠지........
-
저는 나머지 47퍼에 속해서 다행이네요ㅎㅎ
-
텐하흐랑 다르겠지?
-
흐흐흐 25년 12월 기다려라
-
저는머리깨져도의대목표안데 영어물리망해서 택도없고 서성한적정인데 집안에선자꾸반수하래요...
-
도파민이필요해
-
미쿠 노래 들으면서 수학 문제풀이하는게 얼마나 재밌긴 ㅅㅂ 크리스마스 때도...
-
걍 이원준t랑 보내야겠다 에휴..
-
이지랄을 해도 난 왜 여기까지지. . . 너무 공부를 늦게했어. . . . 근데...
-
이번 합격컷 어느정도 될까요? 금속재료썼는데 작년엔 평균이 130정도라네요
-
김미레 <-- 올해 하반기 오르비에서 제일 폼 미침 4
ㅇㅇㅇㅇ 아 근데 블라 먹었노 ㅋㅋㅋㅋ
-
메가스터디를 사실상 이기상 쌤만 들을 것 같은데 이기상쌤 교재 풀커리 세지 한지...
-
논술 채점할까요 0
자신없는데 그냥 행복회로 굴리는게 낫겠죠?.. 슈뢰딩거의 논술..
-
연인이랑 혹시 갈등이 생겨서 스트레스 받을 지도 모르는 거잖아 암 그렇고 말고
-
올해 크리스마스도 10
솔로일 것 같아서 슬프다 애인 있었을 때는 진짜 좋았는데
-
What's up, guys? This is Ryan from Centum...
-
[단독] 민희진 측 3월 카톡 “계약해지 땐 위약금 최대 6200억... 피해 너무 커” 4
걸그룹 뉴진스가 소속사인 어도어에 전속계약 해지를 시사하는 내용증명을 보내며...
-
ㄹㅇ
-
삼수한다는 ㅅㄲ가 확통쎈을 풀고 자이스토리 기출도 다 못끝냈다는게 웃음벨. . .
-
아주 뜨겁네 뜨거워 어우
-
수능판 뜨고싶다 0
근데도 수능판을 모뜨는이유 현실판이 수능판보다 잔인함
시러시러 경우의수 시러요 마니시러