RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (2/3) >
게시글 주소: https://io.orbi.kr/00061810441
[목차]
1. 다항함수의 도출
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
① 다항함수 f(x)에 대하여 f(a)=0인 경우
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
3. 다항함수의 이해: 다항함수의 함숫값
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
② n중근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
------------------------------------------------------------------------
[이전 칼럼]
RC - [수학Ⅱ] 삼차함수 네모박스 < 00 INTRO (+ 자기소개) >
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (1/3) >
------------------------------------------------------------------------
※ 수학Ⅱ 문제는 함수의 모양을 정확히 파악하는 것이 중요합니다.
머릿속에 그래프를 그려낼 수 있을 만큼 그래프 개념에 숙달되신 분이 아니라면,
반드시, 옆에 노트 등을 두고 그래프를 그리며 내용을 따라오십시오.
권장사항이 아니라, 필수사항입니다.
------------------------------------------------------------------------
이전 칼럼
[수학Ⅱ칼럼] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (1/3) >
에서 이어집니다
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
수능 문제가 매우 친절하게 다항함수 f(x)의 근에 대한 정보를 직접적으로 제공할 수도 있지만,
그렇지 않고 근에 대한 정보를 간접적으로 제공할 수도 있습니다.
그 방법 중 하나가 근에 대한 정보,
즉 다항함수 f(x)에 대해 x축(y=0) 위의 정보를 주는 대신
상수함수 y=k 위의 정보를 주는 것입니다.
이때, 우리는 (1)-①에서와 유사한 방법으로 정보를 정리할 수 있습니다.
예를 들어, 삼차함수 f(x)에 대해 f(3)=3이라는 정보가 주어져 있을 경우,
f(x) = ax³+bx²+cx+d , 27a+9b+3c+d = 3
으로 정리하는 대신
f(x) = (x-3)(px²+qx+r)+3
와 같이 나머지 정보를 정리할 수 있다는 것이지요.
해당 개념을 활용해 예제 하나를 풀어 봅시다.
아주 기본적인 정보 나열을 통해 해당 문제를 푸는 방법은
삼차함수 f(x) = ax³+bx²+cx+d 에 대해
f(0) = -3 이므로 d = -3
f(1) = 3 이므로 a+b+c+d = 3, a+b+c = 6,
f(2) = 3 이므로 8a+4b+2c+d = 3, 8a+4b+2c = 6, 4a+2b+c = 3
f(3) = 3 이므로 27a+9b+3c+d = 3, 27a+9b+3c = 6, 9a+3b+c = 2,
이므로
두 번째 식과 세 번째 식에서 (4a+2b+c)-(a+b+c) = 3a+b = -3
두 번째 식과 네 번째 식에서 (9a+3b+c)-(a+b+c) = 8a+2b = -4, 4a+b = -2,
(4a+b)-(3a+b) = a = (-2)-(-3) = 1
3a+b = b+3 = -3, b = -6
a+b+c = c+1-6 = c-5 = 6, c=11
f(x) = x³-6x²+11x-3 , f’(x) = 3x²-12x+11,
f’(4) = 48-48+11 = 11 (Q.E.D.)
와 같습니다.
그런데, f(1) = f(2) = f(3) = 3 이라는 정보를 단순한 정보가 아니라
f(x)의 근에 대한 간접정보로 이해하게 된다면 풀이가 확 달라지게 됩니다.
g(x)=3 , h(x)=f(x)-g(x) 로 새로운 함수를 정의해 봅시다.
그러면 다음 정보를 활용했을 때
h(1) = f(1)-g(1) = 3-3 = 0
h(2) = f(2)-g(2) = 3-3 = 0
h(3) = f(3)-g(3) = 3-3 = 0
가 되므로, 해당 함수 h(x)에 대해
h(x) = f(x)-g(x) = f(x)-3 = a(x-1)(x-2)(x-3) 으로 정리할 수 있고,
이를 다시 f(x)에 대해 정리하면
f(x) = a(x-1)(x-2)(x-3) +3 으로 정리할 수 있습니다.
이렇게 정리하고 나면 위의 풀이가 다음과 같이 달라지죠.
f(0) = a×(-1)×(-2)×(-3)+3 = 3-6a = -3, a=1
f(x) = (x-1)(x-2)(x-3)+3, f’(x) = (x-2)(x-3)+(x-1)(x-3)+(x-1)(x-2)
f’(4) = 2×1+3×1+3×2 = 11 (Q.E.D.)
위의 문제는 애초에 그렇게 어려운 문제가 아니기 때문에
굳이 문제를 이렇게 풀어야 하는지에 대한 의문이 있을 수도 있겠지만,
이러한 정보를 활용하는 방법은 후반에 삼차, 사차함수 고난도 문제를 풀 때 빛을 발합니다.
‘극댓값 또는 극솟값’에 대한 정보가 나왔을 때 이를 유용하게 사용할 수 있죠.
예를 들면,
“최고차항의 계수가 1인 삼차함수 f(x)가 x=3에서 극솟값 4를 갖는다”
와 같은 발문이 있을 경우,
해당 개념을 완벽히 숙지하고 있고 활용이 가능한 상태일 경우
해당 함수를 바로
f(x) = (x-3)²(x-k)+4, (k<3)
과 같은 방식으로 정리할 수 있는 것입니다.
(자세한 설명을 일부러 적지 않을 테니, 한번 머리를 굴려서 시도해 보시기 바랍니다.)
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
x축과 평행한, 즉 기울기가 0인 직선인 상수함수 y=k 위의 정보뿐 아니라
기울기가 0이 아닌 직선인 일차함수 y=px+q 위에 대한 정보가 주어졌을 경우에도
위와 같은 방식을 활용할 수 있습니다.
특히 함수의 접선과 관련된 문제가 나왔을 경우 해당 개념을 유용하게 활용할 수 있죠.
y=f(x)의 x=a에서의 접선 y=g(x)는 by definition,
f(a)=g(a)이고 f’(a)=g’(a)인 직선입니다.
( 접선의 방정식: y = f’(a)(x-a)+f(a) )
따라서 새로운 함수 h(x) = f(x)-g(x) 를 정의한다면 h(x)는
h(a) = f(a)-g(a) = 0, h’(a) = f’(a)-g’(a) = 0 이라는 특징을 자동으로 만족하게 되지요.
바로 예제를 풀어 봅시다.
최고차항의 계수가 1인 삼차함수 f(x)의 x=2에서의 접선 g(x)는
점 (-1, 1)과 점 (2, 4)를 지나네요.
x증가량이 3, y증가량이 3이므로 직선의 기울기는 1, y절편은 2입니다.
즉, g(x) = x+2 이다.
또한, f(x)와 g(x)의 그래프가 x=2에서 접하고 x=-1에서 만나므로
h(x) = f(x)-g(x) 에 대하여 h(x)는 최고차항의 계수가 1인 삼차함수이고
h(2) = 0, h’(2) = 0, h(-1) = 0 입니다.
따라서 h(x) = f(x)-(x+2) = (x-2)²(x+1) 이고,
f(x) = (x-2)²(x+1)+(x+2), h(0) = (-2)²×1+2 = 6 (Q.E.D.)
이 되겠습니다.
위 내용은 정말
매우매우매우매우매우매우매우매우매우매우 중요하니
꼭 제대로 숙지하실 필요가 있겠습니다.
지금 보기에는 그렇게 어려운 개념이 아닌 것처럼 보일 수도 있고
많은 분들이 이미 어렴풋이 알고 있었던 내용이기도 하겠지만,
해당 개념 및 풀이 방식을 완벽히 이해하고 활용할 수 있을 때
추후 등장할 삼차함수 및 사차함수의 고난도 문제에 효과적으로 접근할 수 있습니다.
만약 수능 수학 고득점을 목표로 하시는 분이시라면,
반드시 해당 내용을 정독하며 복습하고,
다양한 접선 문제들에 적용하여 풀어보시기를 바랍니다.
------------------------------------------------------------------------
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 >
칼럼은 중요한 내용이 너무 많고 전달해야 할 정보도 많아
가독성 및 여러분들의 지구력을 위해
총 3개의 게시물로 작성될 예정입니다.
해당 내용은 단순히 삼차함수 관련 문제를 풀 때뿐만 아니라
모든 수학Ⅱ 문제를 관통하는, 수학Ⅱ 이해의 뿌리가 되는 내용이니만큼
해당 내용을 눈 감고도 머릿속으로 떠올릴 수 있을 만큼
철저히 숙지해두시기를 바랍니다.
댓글과 좋아요 등으로 많은 분들이 유익한 글 볼 수 있도록 도와주시면
글을 작성하는 저에게도, 수능을 함께 준비하는 동지들에게도 큰 힘이 됩니다.
위 내용에 대한 질문이 있으시다면,
사진 등으로 질문 및 피드백이 불가능한 쪽지보다는
제 프로필에 있는 오픈채팅 링크로 들어와 주시면 감사하겠습니다.
다음 칼럼의 주제는
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (3/3) >
(링크)
입니다.
빠른 시일 내에 돌아오도록 하겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
6.9때 화2 표점 많이 높게 나오고 화1이 적당하면 화1>>화2로 이동한 상위권들...
-
나군 지거국의(지둔)가 자꾸 아른거리긴 하네 수능은 더 안 보기로 했으니 가서 열심히 할 수밖에
-
입학처 들어갔을때 나오는 화면 순서가 바뀌긴 했는데 조발과는 아무 상관없이 바꾼걸까요?
-
개념 듣고 문제에 적용해서 풀고 해설듣고 모르는거 정리해서 외우기×무한반복 하면 되겠죠?
-
유우카님께는 죄송합니다. 탈퇴는 하지 않고 쉬어야겠습니다. 2
유우카님 죄송합니다. 자연인은 아닐지라도 팬의 사랑을 받는 존재라면 그녀를...
-
제정신인거니..
-
서울대를 제외한 대부분의 대학교가 과탐 같은과목제한이 풀렸다고 들었는데 정말인지...
-
https://n.news.naver.com/article/662/0000059996...
-
대부분이 중등 리뷰, 원과목 맛보기인데 차라리 물화생지1, 사탐을 적절히 섞어서...
-
윤사 강의추천 0
사설들을 돈없음 ㅠ 찾아보면 최양진쌤 추천하던데 최양진 쌤 찾아보니까 2025대비는...
-
저메추좀
-
내신으로 메가패스 환급권 대학은 나올 것 같은데 정작 메가에서 들을 사람도 없는 것...
-
[속보]윤측 "최악 상황 남미 꼴 날 것…中에 잠식 韓 붕괴" 2
[이데일리 백주아 기자]윤석열 대통령이 지난해 7월 23일 오후 경기도 일산...
-
근데 그럼 웨이트 90분한거 날라가니 아 하기 싫어
-
학벌 안중요하단 새끼들은 지 자식 어떻게 교육시키는지 한번 지켜보셈 보통은 사교육...
-
조원들아 미안해 2
밥먹으러가자는데 벌써 밥시켯어..
-
계열제는 성대 인과계 사과계 자과계 등등 혹은 설인문 정시 생각하시면 되고 학과별...
-
정수환 은종찬 0
생윤 정수환 선생님 확통 은종찬 선생님 작년에 재종에서 들었을때 정말 도움이 되었던...
-
벌써 개근본인데
-
당황스러움
-
현역 언미생지인데 국어는 시간 좀 부족하긴 한데 비문학이 문학보단 나은편?...
-
만약 군복무중 대학에 합격하면 바로 군휴학을 낼 수 있나요? 그렇게 된다면 등록금...
-
그야.. 확통을 안해봤으니까..!
-
삼반수 모여보셈 12
언제부터 할거임? 또 과탐1중에 사탐런할거임?
-
수학 공부 하다가 생각나서 써봄 9.삼차함수의 극한 계산 10. 속도 가속도 기본...
-
작수 93인데 모름 그냥 막 절편끼리 내분점 느낔으로 곱하는거같은거 릴스에서...
-
!!!
-
내신용으로 내신 범위까지 듣다가 그냥 이걸로 완강했어요 참고로 선생님은 ebsi...
-
ai가 딱딱 연령별, 차량별, 보험경력별 상품 안내해주고 중간중간 할인특약만 딱딱...
-
심찬우 계속 학벌 안중요하다면서 과정에 신경쓰라고<<<이거 진짜 개소리같은데...
-
전 리트리버가 거의 대부분
-
드뎌 집간다 4
11시 반에 나와서 이제 집가는 15000보걸었음
-
403 설인문 3
with 가군 연철학 개멋있는 삶...
-
확통런데 난 써본적이 없는데.. 인강에서는 안알려주노..
-
딱이야
-
3월까지 개념끝내고 문제뺑이칠까 아님 8월에 시작할까 내 친구 중엔 10월에...
-
빠지실 분 계신가요?? Or 몇명이나 빠질까요 예비 30번이면 붙을까요??
-
게이같지만 진짜 무섭긴 했어요
-
20키로 추 양쪽에 하나씩 달고 20×3세트하고 여자친구 여름비 1절 동안 수...
-
고2 10평 문제인데 생각보다 괜찮음 구간 나누고 와랄랄라 하는 느낌이 풀만한듯
-
여긴오히려정보가너무많아서문제
-
구하는 과정 자체는 별차이 안 나는게 팩트긴 하지만 계산을 눈으로 할 수 있게...
-
거리곱 넓이공식 등등 안씀 그냥 무지성 계산함
-
이제 수능판뜨고 0
다른시험 준비하는데 패스가 ㅁㅊ새끼마냥 비싸고 정보는 존나없는데 시험기조까지 바뀌는...
-
허허허
-
거리곱 좋음? 14
대강 본 기억만 잇는데 이건 진짜 굳이 싶어서 안쓰긴 함 삼각함수 비율관계가 차라리 낫겟는데
-
대학은 그 빈 정원을 편입으로 메꾸는 건가요?
첫번째 댓글의 주인공이 되어보세요.