라이프니츠의 위엄 #다이어그램
게시글 주소: https://io.orbi.kr/00057535903
0. 라이프니츠의 위엄
유튜브에서 '이게 바로 라이프니츠의 위엄이죠' 영상을 봤습니다.
저도 떠오르는 게 있어서 주저리주저리 라이프니츠 썰을 풀어봅니다.
1. 정언문장
모든 S는 P이다
어떤 S도 P가 아니다(=모든 S는 P가 아니다)
어떤 S는 P이다
어떤 S는 P가 아니다
위와 같은 문장을 논리학에서는 정언문장(categorical proposition)이라고 합니다. 쉽게 말해, 두 카테고리 간의 관계를 나타내는 문장이라고 생각하면 됩니다. 수학 집합과 명제 시간에 배워서 다들 익숙할 겁니다.
2. 라이프니츠 다이어그램
라이프니츠는 정언문장을 다음과 같이 선형 diagram으로 나타냈습니다. 따로 설명이 필요하지 않을 만큼 직관적입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 아래 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
3. 오일러 다이어그램
오일러는 원으로 정언문장을 나타냅니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
4. 벤 다이어그램
벤은 오일러 다이어그램을 개량합니다. 아무것도 없는 부분에는 빗금을, 대상이 존재하는 곳에는 x를 표시하는 방식입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
5. 루이스 캐럴의 다이어그램
벤 다이어그램은 집합이 넷인 경우에는 원으로 나타낼 수가 없습니다.
위와 같이 그리면 ‘A와 D만 있는 영역’과 ‘B와 C만 있는 영역’을 나타낼 수 없습니다.
참고로 벤이 제시한 집합이 4개일 때의 다이어그램은 아래와 같습니다.
이거 말고 아래처럼 꿀렁꿀렁한 버전도 제시하긴 했습니다.
_이미지 출처: Venn, J. (1880). On the Diagrammatic and Mechanical Representation of Propositions and Reasonings. London, Edinburgh, and Dublin philosophical magazine and journal of science. R. Taylor.
이외에도 벤은 집합이 다섯, 여섯인 경우까지도 어떻게든(혹은 억지로) 그림을 그려내긴 했는데, 일곱 개부터는 따로 언급이 없습니다. 실제로 컴퓨터 없이 그려내기가 몹시 어렵고, 추상화 같은 벤 다이어그램이라서 실용적으로 활용하기도 어렵습니다.
이런 문제점을 해결하기 위해 루이스 캐럴은 아래와 같이 사각형으로 나타내는 방법을 고안합니다.
(참고로 여기서 루이스 캐럴은 『이상한 나라의 앨리스』, 『거울 나라의 앨리스』 저자이기도 합니다. 작가이기 전에 수학자이기도 했으며, 『Symbolic Logic』을 쓰기도 했어요.)
사각형의 위쪽은 X, 아래쪽은 ~X, 왼쪽은 Y, 오른쪽은 ~Y를 할당하는 거죠. 그러면 아래와 같이 영역이 나뉩니다. (∧는 and, ~은 not을 뜻함.)
셋일 때는? 안쪽에 사각형을 하나 더 만들어서, 사각형 안에 있으면 Z, 밖에 있으면 ~Z를 할당합니다.
예를 들어, 질병관리청에서 제시한 <중독 분류도>는 캐럴의 사각형을 활용했습니다.
_출처: https://www.kdca.go.kr/contents.es?mid=a20308060100
이런 식으로 나타내면 카테고리가 더 많은 경우도 다음과 같이 체계적으로 나타낼 수 있습니다.
_그림출처: Carroll, Lewis (1896). Symbolic Logic. Macmillan.
6. 파그난의 SYLL
2012년에 발표된 따끈따끈한 다이어그램입니다. 키보드에서 완전히 구현가능합니다.
모든 S는 P이다
S→P
어떤 S도 P가 아니다
S→•←P
어떤 S는 P이다
S←•→P
어떤 S는 P가 아니다
S←•→•←P
직관적으로 화살표 방향으로만 이동할 수 있을 것 같죠? 맞습니다. 예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 S→M, M→P이며, 이를 연결하면 S→M→P입니다. S에서 출발하여 P에 도착했으니 결론 “모든 S는 P이다.”가 타당하게 도출됩니다.
다음과 같은 규칙도 직관적으로 받아들일 수 있습니다.
대우규칙: 어떤 S도 P가 아니다(S→•←P) ≡ 어떤 P도 S가 아니다(P→•←S)
교환법칙: 어떤 S는 P이다(S←•→P) ≡ 어떤 P는 S이다(P←•→S)
그러면 연습을 해볼까요? (직관적으로 “이게 되나?” 싶은 추론들은 다 성립합니다. ㅎㅎ)
1. 모든 A는 B이다. 어떤 A는 C이다. 따라서 ____
A→B, A←•→C를 연결하면 B←A←•→C이고, 이는 B←•→C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 C는 B이다.”입니다.
2. 어떤 A도 B가 아니다. 어떤 A는 C이다. 따라서 ____
A→•←B, A←•→C를 연결하면 C←•→A→•←B이고, 이는 C←•→•←B으로 간결하게 나타낼 수 있습니다. 따라서 정답은 어떤 “C는 B가 아니다.”입니다.
3. 모든 A는 B이다. 어떤 B도 C가 아니다. 따라서 ____
A→B, B→•←C를 연결하면 A→B→•←C이고, 이는 A→•←C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 A도 C가 아니다.”입니다.
덧: * SYLL은 syllogisms(삼단논법)에서 가져온 용어입니다. 관련 논문은 다음과 같습니다.
Pagnan, R. (2013). A diagrammatic calculus of syllogisms. In Visual Reasoning with Diagrams (pp. 33-53). Birkhäuser, Basel.
7. 라이프니츠의 위엄
오일러 다이어그램이나 벤 다이어그램은 시각장애인이 점자로 인식하기에는 다소 어려운 구조라고 합니다. 그래서 2015년 서울대학교 산업공학과 삶향상기술연구실(박우진 교수)에서 시각장애인을 위한 다이어그램을 개발했는데, 다음과 같습니다.
이렇게 하면 두 집합이 겹치는 부분이 어느 정도인지 점자로도 쉽게 확인할 수 있다고 해요. 뭔가 앞에서 봤던 것과 비슷하죠? 네, 라이프니츠 다이어그램과 핵심 발상이 똑같습니다. 박우진 교수님 연구실에서 라이프니츠 다이어그램을 알고 만들었는지는 잘 모르겠지만, 라이프니츠가 참 대단한 사람이라는 생각이 들긴 합니다. 이 역시 라이프니츠의 위엄이랄까요. ㅎㅎ
8. 잡담
2019학년도 수능에 나온 '가능세계' 다들 알죠? 라이프니츠가 “이 세계는 무한하게 많은 가능세계 중 최선의 세계이다”라고 말한 데서 출발한 개념입니다.
또한 수능국어/PSAT/LEET 준비하는 분들은 '라이프니츠의 법칙'도 이미 알고 있을 겁니다.
"라이프니츠는 만일 X와 Y가 동일하다면 이들이 똑같은 특성을 갖는다는 ‘동일자 식별 불가능성 원리’를 제시했는데"
_출처: 2022학년도 수능 예시문항 국어 5~10번
"두 대상이 모든 속성을 공유할 경우 그리고 오직 그때에만 그 두 대상은 동일하다"라는 라이프니츠의 법칙"
_출처: 2010학년도 언어추론(예비) 25~27번
만약 예시문항을 분석하지 않아서 이 내용을 지금 처음 본 수험생이 있다면, 아래 영상을 꼭 보길 바랍니다. 3분 정도면 출제 포인트를 하나 정리할 수 있습니다. :)
필요충분조건 표현법 #라이프니츠의 법칙
https://class.orbi.kr/course/1888/lesson/40685
이해황
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
메이플 탄지로 3
스우까지 컷 캬캬
-
똑똑한애들이 설공가야됨 35
원래 둔재들이 메디컬가고 진짜 똑똑한 애들이 설공가야된다고 봄 난 범부라 서울대가면...
-
몇개 맞추셨나용….. 인칼분들만 해주세요‘ㅜㅜㅜㅜㅜ 냥논 냥대
-
님들이면 어디감? 참고로 삼수생임
-
국어 선택 0
국어 강사 누구 들을지 고민중인데 주간지랑 이것저것 빵빵해서 김승리 들을까요?...
-
윤도영쌤이 2026년도 탐구선택가이드 올릴때까지 선택미룰것같은데 그동안 국영수만 할까
-
미적 2컷 2
미적 1틀 76점인데 2등급 ㄱㄴ? 표점때문에 가능한가
-
나 답은 맞은거같은데 필력이 개판이라 기대가 안되네
-
고대 사과탐 통합변표 기원 1일차
-
근데 25는 뭔 복을 타고났길래 6,9,수능에 다나오냐 9
그것도 29,30 같은 주요 문항에만
-
일단 3합3 맞췄을 사람들이 많지 않을거고… 수학은 거의 항상 백분위...
-
이거 매년 개정되는 강좌인가요?
-
난 메쟈의 아니면 안가
-
3.8X/4.3 이론물리학 연구실 진학예정 심심합니다. 학업적인 것, 대학생활...
-
질산칼륨
-
고대 세종 약학 11
난이도: 중하 타임어택: 최상 (소문항 10문제를 90분 안에...)
-
3모 88 5모 85 6모 92 7모 92 9모 92 10모 86 수능 100 더프...
-
근데 기하 쉽다는 분들 17
확통이랑 비교하면 또 기하가 확실히 어렵다 생각하시나요?
-
중졸의 뇌로는 이해할수없는것들을 막 조사해서 아는척 해야하는데 뽀록날것같아서 걍...
-
중대 오후 1번 1
4/27나오던데 맞나요?? 뭔가 틀릴거같은데….
-
연인 나이차 12
위아래 몇살이었으면 좋겠음?? 나는 위로 6살이상
-
부엉이가 물에 빠지면? 13
첨부엉 첨부엉 ㅋㅋ
-
허우적허우적 ㅋㅋ
-
미적확통 1
아무리 확통머리가없고 미적공부하면 자연스레 수1수2심화공부된다해도 문과면 닥확통하는게 맞겠죠?
-
흠냐 6
잘 잤나? 다시 잘까 으헤
-
포켓몬 몸부림 6
그 기술 다 쓰면 몸부림 쓰는데 예전에 난천 깰 때 초염몽 몸부림으로 개지랄해서 깨던 기억이 나네
-
문학 공부범 7
이처럼 훌륭한 비석을 남겼다 이부분이 반어법이라는데 그런건 어디서 근거를...
-
241122: 69×7=683 251130: 18^2=364
-
작년에 고대 5점차이는 ㄹㅇ 진짜 너무하긴하네 올해는 통합변표로 가자! 출처: 물리학 1 갤러리
-
한국사의 중요성 5
저 한국사 2라 한국사 1로 바꾸면 제가 이김
-
사탐런 메디컬 2
미적에 사탐끼는거 어떤가요 07이고 미적 안정적으로 1떠요(백분위98이상) 국영은...
-
켄텍 진짜 좋은학교인데
-
'성균관대 예비 25학번 지원자방'으로 옾챗에 검색하시면 뜹니다 링크는 금지어가...
-
신분증 분실 상태로 논술을 쳤는데 학교에 다음주 화요일까지 실물신분증 들고 오래요...
-
논술 감독관 선생님들은 다 그 학과 교수님들인가요? 0
ㅈㄱㄴㅈㄱㄴ
-
이왜진 9
-
짜장 시켰는데 짬뽕왓네 37
그래서 전화했는데 내가 실수로 짬뽕 시킨게 맞앗음..
-
답 숫자 꼬라지 보면 난 무조건 풀다가 삑사리난다 수능에서 저런 숫자 보면 그대로...
-
4 1
4차원
-
가천대 논술 0
연습지 주나요?
-
다름이 아니라 흔히들 말하는 사탐런을 해서 물리학과 or 공대를 지원하려는...
-
없음? 오늘 논술치고왔는데 오르비에 한명도안보이네 생존신고좀
-
멋있는척 2
. 담넘기
-
내 거 니 거 남의 거 앞의 거 아래(의) 거 회사(의) 거 학교(의) 거 뒤의 거...
-
뉴런까지 하면 1등급 됨? 한 두 문제 차이임 물론 고2 모고 기준... 고3은...
-
국어 제외 노베입니다 가능하면 이과도 지원해보고 싶어서 사문+생명 하려는데 메리트...
-
일단 다 풀어야 합격권일듯.. 소문제 하나 못풀었으면 푼건 과정까지 다 맞아야할듯
-
어느정도 나올거같나요?
-
ㄹㅇㅋㅋ
-
국제사회에서 인정받는 그날까지 최선을 다해서 고고!@!
파그난의 방식은 좀 어렵네요.
킹갓해황쌤
이것이 바로 라이프니츠의 위엄이죠
이것이 바로 실력파쌤의 위엄
실력파임을 강조하기 위해 본문하단에 제 얼굴사진을 방금 넣었습니다.
찰스 도지슨 A.K.A 루이스 캐럴
뭐라는거죠?
오..
이..이게뭐노..
해황쌤 리트 준비생인데 혹시 오르비클래스에 리기추 강의 업로드 일정계획이 어떻게 되실까요?? 막판에 3개년 기출 정리하고 시험장 들어가려고 하는데 21년도와 22년도는 각각 2지문씩밖에 업로드가 안되어 있어 근 1-2주 내로 추가 업로드 계획이 있으신지 궁금합니다 ㅠㅠ
감사합니다!