좋은 해설과 나쁜 해설을 구분할 줄 아는 눈
게시글 주소: https://io.orbi.kr/0004143646
이런
질문을 하는 학생이 있었습니다.
“쌤! 쌤
말대로 최대한 해설을 안보고 스스로 문제를 풀어보려고 했는데
도저히 안되네요.
진도가
하루에 한 장도 못나가요. 어떻게
하죠?”
저는
이 질문에 대한 답을 “좋은
해설과 나쁜 해설을 구분할 줄 아는 눈” 이라는
글로
답변을 드리고자 합니다.
결론부터
말씀드리면
개념
및 대표유형 문제풀이 능력이 갖춰지지 않은 학생들은
문제가 안풀린다
싶으면
빨리
해설 풀이를 참고해서 ‘아~ 이렇게
하는거구나’
캐치한 다음 동일한 유형을 반복적으로 풀어서 자기의 것으로
만들어야 합니다.
이때
좋은 해설과 나쁜 해설을 구분할 줄 아는 눈이 필요합니다.
아래
두 가지 사례를 보시죠.
사례1
개념에
대한 설명을 읽고 이해한 다음 문제풀이에 돌입한다.
‘허걱! 이거
뭐야 왜 하나도 안풀리지?
답을 좀 봐야겠네…아…요렇게
푸는 거구나’
‘아~ 이건
풀긴 풀었는데 엄청 오래걸리네…이
방법 밖에 없나…해설은
어떻게 풀었을까’
사례2
개념에
대한 설명을 읽고 이해한 다음 문제풀이에 돌입한다.
‘허걱! 이거
뭐야 왜 하나도 안풀리지?
답을 좀 봐야겠네…머야
이거…이런
XXXX
어떻게
이걸 생각해내라는 거야, 말도
안돼’
위 두 가지 사례에서 사례 1은
좋은 해설이요, 사례
2는
나쁜 해설이라고 볼 수 있습니다. 물론
사례
2와 같은 문제를
생애처음 접하면서 위의 해법을 생각해내는 분들도 있을 수 있다고 봅니다. 하지만
일반적으로는 저런 발상을 떠올리기 힘들죠. 아래와
같은 접근법이 보다
현실적인 접근법이죠.
좋은
해설의 특징은 일반적인 지능 수준을 가진 학생이라면 누구나 떠올릴 수 있을법한 발상을 적용한다는 것입니다. 그렇기
때문에 동일한 유형의 문제들을 보면 해당 발상법이
자연스럽게 떠오르게
됩니다. 그리고
좋은 해설은 해설을 이해하는 과정에서 학생들로 하여금 논리적인 사고를 하게 하여 고난이도
문제를 풀어내는 힘도 키워줍니다.
하지만
나쁜 해설은 IQ150 이상의
천재 학생들만 떠올릴 수 있을 법한 발상을 적용해서 문제를 풀어놓습니다.
이런 해설은 똑같이 생긴 문제가 다시 출제될 때만 효과를
발휘하겠죠. 수능공부엔
전혀 도움이 되질 않습니다. 해설을
보고 이해하느니 그냥 문제를 버리는 것이 낫습니다.
마지막으로
짚고 가야 할 중요한 것이
있습니다.
좋은
해설과 나쁜 해설을 구분할 줄 아는 눈은 개념공부 또는
대표유형 문제를 푸는 단계에서만 필요합니다.
개념이
얼추 완성되고 대표유형 문제들에 대한 풀이가 완성된 학생들, 즉
수능기출
또는 EBS반영도서를
공부하는 수준의 학생들에게 있어서는 좋은
해설이란 없습니다. 해설은
다 나쁜 것이라고 보셔도 무방합니다.
일단
해설을 보는 순간 그 문제는 자기의 것이 안되었다고 보심 됩니다.
이
때부터는 그야말로 더 고민한 자가 더 높은 점수를 받게 되는 것입니다.
어서
빨리 개념과 대표유형 문제풀이 공부를 마스터하고
해설에
절대 의존하지 않는 수학 고수가 되시길 바랍니다.
조관T 수학기본
무료특강 바로가기:
http://class.orbi.kr/class/119/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
림잇 한 번 들었었는데 좋은진 잘 못 느꼈어요 필기 적는데에만 급급했던? 근데 올해...
-
뭘 해볼까?? 각자 정말 멋있다고 생각하는거 추천좀 ㅎㅎ
-
22학년도 23학년도 정법 만점자가 말하는 올해 등급컷 및 잡소리 0
정법 과외는 정말 까다롭습니다. 왜냐하면 정법 과외를 하려는 사람이 없어 과외를...
-
본인 1학년 + 9분위 + 국가근로 전적 o (24여름/2학기) + 3.4/4.5...
-
수험생 입장에서 배경지식이 있다면 어느 정도의 수월함을 느낄 수 있음 근데 이건...
-
한문이랑 중국어는 조금 해봄뇨 많이 옛날이긴 한데 풀고 점수 올릴게요 아마 한문풀듯
-
짜피 블라인드라 알빠아니라고 서울대안가고 지방대로 4년장학금 받으면서 입학했대
-
라인 지금 작년이랑 똑같아 보이는디
-
무영탑.
-
국어 : 메가 강민철T 강기분, 새기분 대성 김승리T 앱스키마부터 파이널까지 수학...
-
연애하고싶어요 2
진짜 좋은 사람 만나고싶은데 너무 어렵다 내가 좋은 사람이 아니니까 그렇겠지
-
시작해볼까 하는데
-
뭐가 더 빡셈?
-
텔그 vs 낙지 4
하나만 할까하는데 뭐가 정확한가요?
-
24112 9
어디 됨? 제발 누가 좀 알려줘봐 재수해도 가능성 있는 점수임? 중경외시는 아예 불가함?
-
첨 풀어봤는데 너무 어렵군요;;
-
보는맛 ㅈㄴ 없네 키리코 아나 관짝 갔나
-
좀 애매한거같아서.. 만약 붙으면 상향을 못쓴다 라는 게 좀 걸려요
-
ㄱㅇㅇ
-
삼반수 0
작수백분위 국수탐탐 97 89 78 84(1233) 올해백분위 메가기준 95 98...
-
가챠용부계 두개>> 둘다 아이디까먹음 리세계 두개>> 가챠용으로 가끔 접속...
-
이런 비교 맞나요?
-
공군 선택 2
이런 거 물어볼 때가 마땅치 않아서 ㅠㅠ 여기에 올려봅니다. 댓글이나 투표해 주시면...
-
노베기준
-
더 필요한 거 있어요??!!!? 원래는 이걸로 깎음요. ,.
-
지거국 0
지거국 12명뽑는학과 점공11명중에 3등인데 1,2등 다 빠지는사람인데 느좋인가요?...
-
둘 다 합격하면 어디 가세요?
-
영어1등급 2
생각할수록쓸모가없는듯 영어2 받는 대신 미적 1컷 84해주면 좋겠다 ㅠㅠㅠㅠ 성적표ㅈㄴ궁금하네
-
2시간 뒤 폭파 예정. 편하게 상담 ㄱㄱ 이제 교재 써야 돼서 당분간 못 들어올 듯 합니다.
-
ON 3
IN 치지직
-
빙과도 케이온도 러키 스타도 다 너무 평화롭기만 해서 두근거림이 없어
-
두 개까진 안바란다 이과 자존심을 지켜라
-
무엇이라고 생각함? 메디컬 급의 극상위권을 제외한 구간에서의 성적 정체
-
미적 89 81 74 기하 92 84 77 확통 97 89 82
-
사실 굉장히 적은 작품찍고 많이 맞춤 ㅇㅈ좀 최저 가채점 낙지 텔그
-
인하대 가능? 2
인하대 공대 가고 싶은데 내일 세종대 지구자원시스템공학 논술 있어요 인하대에서...
-
둘 다 합격하면 어디 가세요?
-
도깨비 재밌음? 1
듣기만 하고 본 적이 없음 정보) 도깨비는 고대국어 시절 "도조가비" 정도로 불렸을 수 있다
-
맛있는부위에 적당한 양념으로 만든건 저도 좋아하는데 대부분의 제육이 뻑뻑한 부위에...
-
내년부터는 왕복 5시간 통학을 하기로 했다
-
일단 6,9모 성적 44인데, 11수능에 48점 1등급으로 올라왔습니다. 적생모...
-
놀랄 노 자네
-
수학 후기좀여 3-1,3-2 답 대조해봐여 1~2-1풀었는데 3번도 맞으면 약학...
-
언매 91 백분위 92 미적 92 백분위 96 한지 48 백분위 96 사문 47...
-
등장 7
ㅎㅇ
-
국어 화작 81 0
국어화작 공통만 틀린 81점인데 3등급 될까.?0
-
진학사 미적 1컷 86으로 잡혀있는데 88은 모두 다 1등급으로 찍히나요? 88에서...
-
일반고 계적 0
고대 자연 계적에서 일반고 합격이 13퍼던디 얘넨다 갓반고임? 서울대 10명씩 가는 학교는 되나?
사실 제가 본 수학문제집들엔 사례1같은게 99%였고 저는 사례2정도로만 풀어서 답지같은 접근을 키워야겟다 햇는데 제가 잘못된게아니었군요..
좋은글 고맙습니다
ㄹㅇ 진짜 완전공감 2번에서 적어도 완전제곱식이라는걸 한줄만 써줫으면 나중에 저렇게생각해서라도 풀텐데 처음볼때 엄청막막햇음
Good
와 좋은글이네요 많은분들이 참고하시면 좋을것같네요
풀이 2를 바로 생각해내는 사람도 있습니다. 어려운 풀이인지 모르는 사람도 있어요ㅋ
좋은 집필진이란 어떻게 풀어주는 것이 좋은 풀이인지 알고 그것을 제시해주는 사람이 아닐까 합니다.
맞습니다 간혹 일반적인 방법보다는 정말 창의적인 방법으로 접근하는 학생들이 있더라구요..가장 좋은 건 하나의 문제를 전혀 다른 색다른 여러 방식으로 풀어내는 능력이겠죠...그런 능력자가 되시길~
풀이2가 바로 생각나지 않는게 이상하다고 보는데... n^2+5n도 아니고 4n인ㄷ...
제가 많은 학생들과 같이 공부해본 경험에 의하면 생애처음 접할땐 생각을 많이들 못떠올리던데^^; 방화님이 수학을 잘하시나봐요 수능만점까지 열공하세용~~
풀이2번
고1때 하던 식변형인데
오히려 저기서 규칙성 발견하려고 생각하는게 더 힘들어보임
규칙성을 발견하는 능력은 수능에서 정말 중요합니다. 특히 수열, 극한문제 풀이에 정말 효과적이죠..저 정도의 규칙성 발견과 관계식 세우기는 반드시 갖추고 있으셔야할 센스입니다
이글에는 맞지 않지만 질문하나 하겠습니다.
고1때 배우는 고등수학을 한번 정리하려고 하는데 고1교과서에 있는 개념과 기본문제만 풀고 정리를 하려고 하는데 괜찮을까요? 즉 교과서 개념만 간단하게 정리하면 충분한지 고1응용 문제까지 풀어야 하는지 궁금합니다.
참고로 저는 이과 학생이고 수능에 필요한 고등수학을 질문드리는것입니다.
교과서만으로는 좀 약합니다 이과를 지망하는 예비 고2라면 겨울방학동안 쎈수학같은개념과 대표유형을 같이 다루어주는 문제집을 끝내보세요..그리고 나서 제가 올려놓은 수학기본 무료특강을 들어보세요..강의가 80%이상 이해가 된다면 고1 개념은 얼추잡힌 것입니다 열공하세요
예비고2는아니고 수능을 보는 수험생인데요. 수능에 나오는 고등수학정도만 알면 될것같아서 교과서로 개념빠진거 보충하려고 했는데 꼭 쎈수학까지 풀어봐야 할까요?
수능에 나오는 고1수학을 커버하고자 하시는 거라면 무료인강에 올라와 있는 제 강의 "수학기본 무료특강"을 보십시요. 수능에서 다뤄지는 중학교 및 고등수학의 대부분 내용을 포함하고 있습니다. 교과서로 공부하면 '아...이런 개념이 있었지'라고 다시한번 기억을 떠올릴 수는 있겠지만 그건 개념을 읽는 것일 뿐 진정한 이해는 문제풀이를 통해 이뤄진다고 전 생각합니다. 열공하세요!
사례2 부분에서 전 당연히 부등식으로 정수부분 소수부분 나눠서 정수부분이 저거니까 극한을 보내면 그거겠지!! 전 첨봤을때 이런풀이로 했거든요.... ㅋㅋ 근데 나중에 고3되서야 알겠더라구요 발견적 추론이 얼마나 중요한지를요 ㅋㅋㅋ 사례2번 공감합니다 ㅋㅋ
정말 좋은 글 잘 봤습니다. :)