[박재우T] 다르부 정리와 도함수의 연속성
게시글 주소: https://io.orbi.kr/00039765358
안녕하세요 박재우 T입니다.
라스트 스퍼트 강의 시작했습니다.
저를 아는 학생들 모두 라스 선택하면 후회없을 거라 확신합니다.
열심히 달려봅시다.
이제 본론으로 들어가서
이전에 한 번 언급했던 적이 있었습니다.
도함수가 연속인지 아닌지 모르는데 도함수에서 사잇값 정리를 쓸 수 있느냐는 문제입니다.
결론부터 얘기하자면 쓸 수 있다 입니다.
물론 이와 같은 주제와 연관된 과거 기출문제는 수업시간에 다루면 안되겠죠 ?
당위성을 위해서 설명해야 하는 것이 대학과정 개념이라면 출제해서는 안됩니다.
그냥 쓸 수 있다라고 단정하고 지나가는 것도 물론 안되구요.
그래서 저는 강의에서 롤의 정리에 대해 많이 강조합니다.
암튼
도함수가 불연속일 수 있음에도 도함수에서 사잇값 정리를 쓸 수 있다는 것을
가능하게 해주는 것이 바로 다르부 정리입니다.
한 번 알아보도록 하죠.
우선 함수 중에서 미분가능하지만 도함수는 불연속인 함수로 거론되는
대표적인 함수가
입니다. 이 함수는 x=0에서 미분가능하지만 도함수는 x=0에서 자명하게 불연속입니다.
이 함수의 경우처럼 도함수가 불연속인 함수는 사잇값 정리를 도함수에서 제약없이 막 쓸 수가 없겠죠
이제 다르부 (Darboux) 정리에 대해 알아봅시다.
<Darboux 정리>
함수 f(x)가 폐구간 [a, b]에서 미분가능하고 구간 양 끝점인 a와 b에서의 미분계수가 다르면
f'(a)와 f'(b) 사이의 임의의 값 k에 대해서 f'(c)=k 를 만족시키는 점 c가 개구간 (a, b)에서 존재한다.
아래 부분은 스킵해도 됩니다. 관심있는 분들만 보셔도 됩니다.
이제 증명 한 번 해보면
인 경우를 생각해봅시다.
폐구간 [a, b]에서 정의된 함수
라 정의하면 명백히 g는 폐구간 [a, b]에서 연속이면서 미분가능합니다.
그러므로 연속성의 정리에 따라 g는 [a, b] 위에서 최솟값 g(c)를 갖습니다.
즉, [a, b] 에서의 모든 x에 대하여
를 만족시키는 c가 폐구간 [a, b]에서 존재합니다.
그런데.
이 되므로 함수 g(x)는 x=a에서 감소상태에 있습니다. 그러므로
를 만족하는 점 d가 폐구간 [a, b]에서 존재합니다. 이제 마찬가지로
이 되므로 함수 g(x)는 x=b에서 증가상태에 있습니다. 그러므로
를 만족하는 점 e가 폐구간 [a, b]에서 존재합니다.
따라서, 점 c는 개구간 (a, b)에서의 원소이고 구간에서 g(c)는 최솟값이므로
구간 내에서 극대, 극소를 갖고 미분가능하면 자명하게
즉,
입니다. 같은 방법으로
도 증명해볼 수 있습니다.
이러한 이유로 정의한 구간 내에서 f의 도함수가 연속함수가 아닐 지라도 연속함수의 경우와 마찬가지로
f의 도함수에 대한 사잇값 정리가 성립함을 알 수 있습니다.
머가 먼지도 모르겠고 그냥 그렇다고 하니깐 쓰자라는 것 보다는
아예 애시당초 이런 문제는 안 내는 것이 상책이라 생각합니다.
그래서 롤의 정리가 수능에서는 더욱 더 깊이 있게 다가오는 것이 아닐 까 생각합니다.
물론 요즘은 잘 안나오는 주제이긴 하지만서두요.
아래 기출 문제를 한 번 봅시다.
다들 아시겠지만 여기 ㄷ지문은 롤의 정리가 더 좋지 않을까요 ?
두서없는 글 죄송합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
게이차나 2
딩딩딩딩딩 딩딩딩딩딩
-
맞팔할 사람 2
맞팔해주세요
-
안 가는 거 같던데
-
ㅈㄱㄴ
-
과외생 부모님께서 명절 선물 주셨어 으른같아
-
가사가 슬프네
-
고우고우
-
문제집 뭐 추천하시나요?? 과외생이 이런 상황인데 수1 기억이 안 나서 모고에서...
-
ㄱㅁ 3
보드게임 뱅 1등 흐흫...
-
반수 시작? 3
1세반수 할 거 같은데 3월부터 관독 들어가는게 맞을까요? 보통 어떻게 하나요?...
-
취하니까 오르비언들이 막 사랑스러워보임 인생은망했지만 기분은좋구나흐흐
-
교재살려고하는데 13정도 안쓰는 사람 나한테 7~80퍼 정도로 팔 생각 있는사람 쪽지좀
-
부산 질문 0
광안리에서 자갈치까지 가는 게 서울 기준으로 거리 비교 어떻게 되나? 서울 촌놈이라 가늠이안되네
-
움모멘토 7
걔가날갠소 하고싶대소 날선물했오
-
뭐가 다른 거야?
-
교재만 사서 푸는건 에바임?
-
3시간 잤다 1
공부해야지...
-
사대 다니는 친한 누나는 벌써 임용 준비하네 난 이제 1학년 들어가는데...
-
수능 국어, 수능 수학, 수험생활 관련하여 고민 상담 질문받음 질문은 더 좋은...
-
인싸가 많고 말많음
-
파이널때까지 몇개 정도 품?
-
평소에는 저한테 몸을 부비대는 등 귀여운 아이였는데 어느날 자고 일어나보니 두...
-
양승진쌤도 비슷하게 풀던데
-
해킹은 아닙니다...
-
마더텅 독서랑 철두철미?라고 써있는 과탐 교재가 있네요
-
게임 뭐할까 23
롤 옵치 fm
-
삼중적분 1
삼중적분은 이중적분보다 3^3/2^2배 어렵단 사실 아시나요
-
벌써 성불한줄아시고 수고했다고 하심... 훠훠 ...
-
품위있는말투,행동에 적응안되서 그냥 헤어짐
-
요즘 피방 자주 가는데 돈 아까움
-
직각이면 말이 안되는 상황인데 대칭성 생각하면 직각 같아서요
-
줄이면 wwe에요.
-
남자고요 약대 졸업하면 29 될 거 같은데 그 나이로 치전원 가면 33 졸업이에요 손해일까요?
-
현역(24수능) 때 김승리 풀커리 탔던 적 있긴 함.
-
예비고2고 이상한 학교라 1학기 때 수1·2 같이하고 2학기 때 미적 하는데다가...
-
가끔 보면 레벨=나이 같기도..
-
이런식으로 내면 재밋을듯
-
솔직히 확통은 업어도 되지않 을까요
-
종이필름 기대되네요
-
슈냥:대충 개빡친 페페가 수특들고 달려오는짤
-
난 이제 당당한 가형러임
-
수능과 별개로 왠지 그럴거 같음..
-
고트인데 ㄹㅇ…
-
진짜 대단하네 나는 아직도 렐 점멸로 궁 피하고 용 먹은거 생각난다 신상혁 슈퍼토스...
-
pdf파일을 보내주는건가요? 한번도 안사봐서....
-
나도 뭔가 그래보고 싶음
-
이쳐매이징 잇 이스 빠킹 아쌈
-
풀이 ㅇㅈ 1
첫번째 댓글의 주인공이 되어보세요.