테일러 급수
게시글 주소: https://io.orbi.kr/0003627183
테일러 급수가 있잖아요...
이거요
이건 고등학교 수준에서 증명 못하나요??(그러니까 막 몇페이지씩 가는게 아니라 10줄정도에서 저거에 관한 정보를 주면 풀수있을정도)
저희학교 선생님이 저걸 학교시험에 낼수있다고하시네요(단순히 겁주는게아니라 여태까지 저런문제를 서술형에 수리논술처럼 내셨습니다. 그래서 이 선생님이 내신 문제 100점이 딱한번 나왔습니다 ㅠㅜ 고2수학이 걱정되네요...이 선생님이 내는 수학이 5단위인데...)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적 14 15 20 21 27 28 다 맞추고 22 29 30 틀리면 '1컷'...
-
옵붕아머해 4
머해??????????
-
술 마시는 것도 아니고 게임 하는 것도 아니고 걍 붕어빵 열 마리 사다가 나눠먹고...
-
거기까지 가서 한국어는 별로 듣고싶지 않은데..
-
안 그래도 애매함데 남중남고군대남초과라서 ㅈㄴ까이는 듯 근데 또 애인은 내 얼굴 좋아하고
-
컄얀
-
도움! 1
대학교메일 받으려면 따로 신청해야되는건가요? 메일있어야 엑셀 된다길래
-
공부일기 1장 3
D-349 오늘 공부한 과목:수학,영어 -수학 시발점 수학2...
-
진짜 다군 고려대조차 떨어질수도 ㅋㅋ
-
오히려 그런짓 하는거 보고 지겨워서라도 그만 하라고 비판하지 근데 페미에 대해 잘...
-
특히 사문 만점자 왤케 없는 느낌이지
-
경외시 낮과(문과) vs 과기대 itm이면 어디가는게 맞을까요 4
학교 네임벨류나 주변 인식 등을 생각하면 전자인데 또 과를 보면 후자라서.....
-
네.
-
순살치킨이나닭강정마렵네 11
누가사들고집으로좀와다오
-
입학전 벌써 걱정되네요 여적여
-
오토코자나이몽 0
온나노코다몽!
-
자연과학대랑 문제 똑같은거 아닌가요?? 모의논술만 봐도 자연과학대/의학과 이렇게...
-
작년 12월 5등급 > 3월 3등급 > 6월 2등급 > 9월 2등급 > 수능 4등급...
-
한국 코노엔 없는 노래가 너무 많음… 레오가 부르고 싶다!!
-
48이 92 47이 백분위 88인데 3등급이라 하길래 뭔소린가 했는데 누가 글...
-
네.
-
단기간에 긴급하게 해결할 업무가 생겨서 지금까지 일하고 주말도 일할 예정이라 한동안...
-
만표가 저렇게 되어버리면 지금보다 5점은 떨어지는게 정배려나..
-
[칼럼]25수능 법지문-2014기출재탕입니다. pdf첨부 1
어줍잖은글로 다시 업로드합니다^^ 예비고3들이 볼거라고 생각되어, 중요한 컬럼...
-
일어나서부터잘때까지 오르비하기
-
운명은 이루어지기 때문에 운명인거야
-
고려대 컴공정도로 생각하면 되나요? 아니면 약대급으로 형성될까요
-
수능선택은 아니고 내신하는김에 보려구 합니다... 한완수 기하는 어떤가요? 방학때...
-
아빠한테 컨설팅비좀 빌려달라그랫더니 이것저것 물어보시고 걍 백오십마넌주심 둘다해....
-
다들 행복하세요 6
-
여캐일러투척 9
누군가를 닮았군
-
왜 곱미분을 그렇게. 하.
-
ㅈㄱㄴ
-
님들 크리스마스 한달도 안남앗어요~~
-
대학 가니까 여친이 뿅하고 생긴 게 ㄹㅇ 신기함 저런 사람이 나랑 왜 사귀는 거지
-
서강대 다군 예비 몇번까지 돌까 ㅋㅋㅋ 난 더 걱정되는게 중대는 수년의 짬을 통해...
-
댓글로 추천 ㄱㄱ
-
마땅한 소재가 없네
-
ㅅㅂㅋㅋㅋ
-
ㅈㄱㄴ
-
시간 왤케 빠른 거임
-
어차피 만날일도 없는데 그게 이득임ㅇㅇ
-
문과 대학 라인 1
평백 85.5에 영어 3인데 이거 어디가냐…
-
인강 컨텐츠들이 25대비에 비해서 풍부한 느낌인데 김범준 데뷔, 뉴런 개정, 김승리...
-
고민되네여~
-
같은 제목을 붙이란 말이야 라인봐달라고 제목부터 말하면 들어가기 싫으니까
-
추구미랑 너무 다름
선생님께서 쓸데없는걸 가르쳐 주셨는데다, 제대로된것을 가르쳐 주지 않으셨네요. 저건 테일러 정리라기 보다는 [각 함수의 n차 테일러 다항식]이라고 부르는것이 정확한 표현입니다. 테일러의 정리는 특정 함수별로 정해져 있는것이 아니라, 일반적인 식으로 유도되어 있습니다.
정확한 증명과정은 고교과정 이상의 것이 필요할것 같네요.
아, 이걸 어떻게 설명하면 좋을까요.
메일 주소를 적어드리면 정확한 증명과정과, 진짜 테일러의 정리가 뭔지 증명과정과 함께 적어서 한글문서를 보내드리죠.
원리는, 어떤 특정 함수의 한 점에서 접하는 일차함수를 정하고, 그 점에서만큼은 특정 함수와 일차함수의 형태가 동일하므로 그 접선의 방정식을 1차근사식이라고 부릅니다. 이 논리를 n차로 확장시켜 보낸것이 n차 테일러 다항식(n차 근사다항식)이라고 하며 현재 님께서 작성하신 테일러 급수라고 불리는 것입니다.
메일주소 적어주세요. 보내드릴게요.
제대로 안가르쳐주신게아니고 제가 이름을 몰라서 ㅋ큐ㅜ
선생님은 e^파이i=-1 이란걸 가르쳐주셨는데 저희가 대충 설명해달라고하셔서 저런게 있다라고만하셨어요(이름은 안 알려주시고)
suvupthesky@naver.com 으로 보내주시면 감사하겠습니다. ㅠㅜ
오일러 공식입니다. e^파이*i + 1 = 0으로 많이들 쓰지요.
수학자들이 가장 아름다운 공식으로 뽑기도 합니다. 자연을 의미하는 수치인 자연상수 e, 완벽함을 의미하는 원을 상징하는 파이, 모든 수의 처음을 알리는 1, 무한의 반대개념인 [없음]을 의미하며 다른 숫자들과는 상당히 다른 0 모든게 있지요. (물론, 가져다 붙인 감이 없지않아 있습니다만....) 그 내용은 [고급수학]에 있습니다.
아니, 그냥 교재를 통채로 드릴테니, 테일러 급수와 오일러공식 모두 찾아서 보시죠. 재미있을겁니다.
제가 고급수학 교재를 보내드리겠습니다. 그 중 7차 개정 전 고급수학을 찾아보셔서, 소단원 중 테일러급수를 찾아보시면 될겁니다.
솔로깡님 저도 고급수학 보내주실 수 있나요?
ehdghks709 nate com 가능하다면 부탁드려요..
감사합니다.
??
원리는, 어떤 특정 함수의 한 점에서 접하는 일차함수를 정하고, 그 점에서만큼은 특정 함수와 일차함수의 형태가 동일하므로 그 접선의 방정식을 1차근사식이라고 부릅니다. 이 논리를 n차로 확장시켜 보낸것이 n차 테일러 다항식(n차 근사다항식)이라고 하며 현재 님께서 작성하신 테일러 급수라고 불리는 것입니다.
이건 뭔 개소리냐;;
테일러 정리는 평균값정리를 확장시킨거야
글 전부 지웠습니다~~!
임의의 다항식으로 두고 차례대로 미분해가면 일반항 구하실수 있을거에요...
f(x) = a_1 + a_2x + ....
하고 차례대로 미분해가면서 ..