-
오랜만에 향수뿌리겟다 17
이거 진짜 1년 넘은 듯
-
뱀이랑 고라니가 나옴...너구리도 나왔다는데...... 사실 이것보다 무서운건 학교 올라가는 계단임
-
1. 저 2026 수능 정병호T 아니면 김범준T 커리 탈라는데 올해 수능 때 들었던...
-
쿠팡 알바 후기 8
쿠팡 캠프인가 암튼 거기가서 소분하는 알바를 하게됨 처음해봐서그런가 존나...
-
누구인지 확인하려했는데
-
수1은 2회독했고 수2는 1회독했습니다 둘다 잘은 모르는 상태 개념만 했어여...
-
보통 탄신일이라 할 텐데...
-
속보)민주당 이재명 대표 ‘위증교사 혐의 무죄’ 선고 0
현재까지 전과 5범(진) 공직선거법위반 1심 징역1년&집유2년 -> 내년 중반...
-
a형 b형 다 어려웠음? 전 b형인데 계산 빡세던데
-
돈이없네 ㅠㅠ 컴활준비 드가자
-
유격 끝나니까 수능 이미 봤다네 나도 수능 보고 유격 좀 뺄껄 ㅋㅋ
-
만원 쿠폰 썼어요 ㄴㅇㅅ 근데 요즘은 배달비가 거의 오천원이네요 ㄷㄷ 인절미 빙수랑...
-
가끔 너구리 나옴뇨 진짜라는거임뇨 담배피러 나왓다가 호다닥 도망간다는거임뇨
-
키빼몸 104.5 14
ㅁㅌㅊ
-
작수 48 백분위 98% 올해 47 메가 예측 98% 나왔어요 17제외하고 다풀고...
-
도태남이 되버림뇨...
-
회기가는중 17
근데약속시간까지너무오래남았다 2시간동안뭐하지
-
대학은 메디컬 설대 연세대 시립대, 나머지 명문대 라인 과는 공대 아니면 경제학과...
-
키빼몸 100 되는거 생각보다 너무 빡세다. 20대 초반에는 몸무게 고점이 키빼몸...
-
언매 미적 지구 사탐 1 어떰 제발 제발 알려죠 제발 진짜!!!!!!!!!
-
박선쌤 현강에서 받은 자료들입니다. 서바이벌전국, 데이브레이크 등등 있습니다....
-
인하대 안정박고 홍대인자전 경희대 지를라하는데 ..
-
운전면허 따는거 6
돈 많이 들어요? 운전학원 몇시간 필수 이런거 있다고 들은것같은데
-
초등 교육부 선정 800개 + 워마 중등 3권 + 워마 고등2권
-
"진실되게 투표한자는 올해 원하는 곳 갑니다..." 수능 현장에서 생명과학1 응시한...
-
그건 사실이라는 거임뇨
-
핸드폰으로는 안되나요?? 여행 중이라 pc로 확인하기가 어려울거 같은데..
-
과외가 ㅈ도 안구해지네
-
옷을 사야하는데 0
살빼고사야지 딱10kg빼고 사도록하겟음뇨
-
국어는 다맞은것 같은데 수학을 1문제를 완벽하게 푼 문제가 없는데 이거 가능성 있음?
-
여러분의견 ㄱㄱ
-
스승님께 예의를 갖춰라
-
미적 2컷 0
공2 미3 틀 80
-
중딩때 반년정도 하다가 학업이슈도 때려쳤는데 10-20이 국룰임뇨?
-
평가원 게이야 3
이미 채점 다하고 한쪽 구석에 방치해둔 거 다 안다 빨리 내놔라
-
나 응애. 에요
-
뭐가 ㅈ같을까
-
에듀셀파 여학생 기숙 갔었는뎅 .. 너무 좋은데.. 질답이 좀 불편... 좋은 곳...
-
[고려대합격자를 위한 꿀팁][사전공지]_고대 합격자를 위한 장학금편 1
안녕하세요. 고대에 처음 발을 딛는 우리 '아기호랑이들'을 위해, 2024년...
-
빨리와
-
스나는 그럼 trg-21인가요
-
10분위도 지원가능한 1학년때 꼭 지원해야되는 장학금 7
대통령과학장학금 이공계우수장학금 인문100년장학금(문과) 윤세영스칼라십...
-
그건 사실이란거임뇨
-
가채점보다 실채점이 더 후할 수도 있나요? 아니면 56789등급도 실채점이 점수 더 내려가나요?
-
수2를 쎈만했는데 13
시발점듀 복습하는겸 빠르게 해야할까요?
-
[사전공지]고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 0
아직 합격자 발표일 이전이지만, 미리 공유 드릴게요!! 고려대 25학번 합격자를...
-
한 2박3일로
-
휴지 한칸으로 일회용 코트임뇨
답이 ㄱㄴㄷ 다맞는거 맞나요? 수학 안본지 넘 오래되서 ㅋㅋㅋ
아 불연속함수인걸 깜빡했네요 ㅠㅠ
ㅎㅎㅎ 답 ㄱㄴ 이에요
매번 좋은 문제 감사요^^
ㄱ. f(x) = (x-1)/(x^2 -x+1) 이니까 연립해서 풀어보면 x=0,1. x=-1일 때 되는 것도 별도로 고려하면 총 3개.
ㄴ. 직접 적분하면 pi/(3루트3) 이므로 1/2 초과 맞음.
혹은 함수f(x)가 구간 0,1에서 아래로 볼록이라서, (0,-1), (1,0)을 잇는 직선 y=x-1보다 아래쪽에 있음을 이용. (y=x-1에 절댓값 붙여 적분하면 정확히 1/2)
혹은 x^2 -x+1 < 1 (구간 (0,1)에서) 이므로, f(x) = (x-1)/(x^2 -x+1) < x-1 임을 이용. (x-1이 음수라서 이렇게 되었음.)
ㄷ. 주어진 함수의 개형을 미분 혹은 다른 방식을 이용하여 그려보면 불연속점 4개임을 알 수 있다. t=0, 1/3, 1, 2 일 때..
미분을 이용해서 그려도 되지만, f(x) = (x-1)/(x^2 -x+1) = 1/((x-1)+ 1/(x-1) +1) 처럼 두고 그래프를 그리면 미분 없이 개형을 알 수 있습니다.
g(x) = 1/(x+ (1/x) +1) 을 평행이동한 것인데, 이 그래프는 분모의 부분인 y=x+ (1/x)의 그래프를 먼저 그려보면 알 수 있습니다.
와 ㅋㅋㅋ 님 짱이에요 ㅠㅠ
근데 저거 직접 적분하는건 대학과정 없이도 할수 있는건가요 ? ㅠ 삼각 치환인가 .. ?
적분(0~1) (x-1)/(x^2 -x+1) dx = 적분(0~1) (x- 1/2)/(x^2 -x+1) + (1/2)/(x^2 -x+1) dx
= [ (1/2) ln(x^2 -x+1) ](0~1까지) + 적분(0~1) 2 / ((2x-1)^2 +3) dx
= 0 - 0 + 적분(0~1) 2 / ((2x-1)^2 +3) dx
여기서 2x-1 = 루트3 tan t 라고 치환하시면
= 적분(0~ pi/6) (2/루트3 ) dt = pi / (3루트3)
이렇게 하시면 됩니다~ 대학과정이라면 대학과정일 수도 있지만 고등학교 지식만으로도 풀 수 있다고 생각됩니다^^ 아 다시 보니 삼각 치환이라고 이미 옳게 말씀하셨군요..ㅎㅎ
알고 말한게 아니라 pi 가 나올길래 찔러본거 ㅠㅠ 님 실례지만 수험생 아니시죠 ? ㅠ
인생이라는 시험을 치르고 있는 수험생인데..ㅎㅎ