적분 질문 두 가지 부탁드립니다.
게시글 주소: https://io.orbi.kr/0001483601
1.
문제 : ∫(위1 아래0) (x^2-x)dx +∫(위2 아래1) 3(x-1)(x-2)dx + ∫(위5 아래3) 4(x-3)(x-5)dx=?
답은 물론 구했습니다. 그런데 답지를 보니 ∫(위1 아래0) (x^2-x)dx = ∫(위1 아래0) x(x-1)dx = -1/6 × (1-0)^3 = -1/6 이라는 식으로 해서 식을 간단하게 놓고 빠르게 풀었더군요. 저는 그냥 식을 무식하게 다 적분해서 일일이 풀었는데......제가 독학이라서 열심히 문제지를 확인했는데 어떻게 이런 식이 나오는지 알 수가 없네요.
2. 문제 : ∫(위x 아래3) (x-t)f(t)dt=x^3+ax^2-15x+36을 만족시키는 미분가능한 함수 f(x)에 대하여 f(3)=b일 때, a+b의 값은? (참고로 a,b 상수)
답은 a=-2, b=14해서 12인데요.
제가 이거 식을 보니 ∫(위x 아래3) (x-t)f(t)dt = x∫(위x 아래3) f(x)dt - ∫(위x 아래3) tf(t)dt임을 이용해 주어진 식의 양변을 x에 대해 미분하여
d/dx ∫(위x 아래 3) (x-t)f(t)dt= ∫(위x 아래 3) f(x)dt + xf(x) - xf(x)가 나오던데...이 부분이 이해가 안 됩니다. 어떻게 나오는지요.
제가 독학이라 막힐 땐 좀 절망적으로 막히네요..ㅠ두 개 부탁드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안녕하세요 유튜브 간간히 올리고 있는 해서입니다. 수능이 3일 남은 시점에서...
-
원래 있던 대학이 너무 싫어서 반수하게 되었는데 3달동안 수학 선택과목, 탐구 2개...
-
공군점수되나요? 2
자격증 69점 출결 18점 봉사8점 다자녀2점 해서 총 97점인데 내년6월 공군 커트라인가능하겠죠?
-
여기서 B지층군 퇴적- 화성암 D분출- 침식 -부정합면 형성 -침강 - A지층군...
-
해원모 28번은 0 1 둘다 그냥 쉬운4점급이던데 수능날에도 이럴 수가 있나요??
-
녹차 아이스크림 저거 jmt입니다!!
-
도와주세요 3
수학 32점 3등급 되고 싶어요
-
?
-
그냥 다닐걸 2
그냥다닐걸 그냥다닐걸 그냥다닐걸 그냥다닐걸 그냥다닐걸 그냥다닐걸 그냥다닐걸...
-
3등급 받고 싶어요 내년 수능 볼거에요...ㅠ
-
미적분 기준 32점 나옴 3등급 받을수있을려나요...도와주세요 국어 3(현재 0점)...
-
생명 인강으로도 듣는거 어떤가요? 듣는다면 누구 들어야 되나요?
-
ㅈ됐다 0
유튜브 조금 보다가 마음에 드는 노래 있어서 쉴때마다 듣다가 국어 수학 실모 푸는데...
-
대부분은 떠났음. 입시 성공했거나 다른 길을 찾았거나.. 난 왜 아직도 여기 있는...
-
캬 좋다잉
-
작년엔 진짜 좋았는데
-
지인한테 400만원 통수당하고 울며 겨자먹기로 어제부터 물류센터 알바를 나가기로...
-
생윤 질문 1
지금 생윤 빨더텅을 다 풀었는데 남은기간 뭐해야할까요ㅔ 해
-
어메이징 하겠죠
-
홍대는 이름값에 가려진 찐 거품대학이라고 생각함
-
입구가 있어서 들어갔고 출구만 바라보며 정해진 길대로 걸어왔는데 출구가 무너짐...
-
나루토 원피스 0
뭐볼까요
-
장발하고 싶다 0
-
만관부
-
너무 힘들다 0
불안해서 잠이 안온다
-
아 큰일났다 0
왜 잠이 안오지 1시간동안 누웠다 왔음..
-
https://youtube.com/shorts/zSPN9fFydkE?si=ccVm0...
-
D-3 2
좀 느낌 다르긴하네 물론 난 수능안침
-
시대인재 단과를 라이브로 들을 예정인데 강기원 쌤은 양 많다던데 김현우쌤 반은...
-
3월에 살때 교재포인트 20만까지 포함으로 82만원 준거 기록에 남아있는데 내년...
-
한마디씩만 충고 부탁해요 술은 권하지 말고
-
영악한애들빼고 순수한애들 많아 ㅠ
-
예비고3 학생인데 미적은 김성호쌤꺼 들을거같습니다 안가람 선생님 공통을 지금...
-
기분이 이상함 0
긴장되는건 아니고 오히려 기대되는데 뭔가 기분이 이상해
-
다들 ㅎㅇㅌ 2
-
누가 더 호감?
-
여기서 다른건 다 알겠는데 ㄹ이 이해가 안되네요... 조사 대상자의 현재 계층과...
-
잠이안와 3
도와줘요
-
기출 도움 많이 받으셨음? 다들 n제 실모만 벅벅 풀길래 좀 궁금하네 그리고...
-
판의 내부에서 일어나는 화산 활동은 차가운 플룸으로 설명할 수 있다 4
판의 내부에서 일어나는 화산 활동은 차가운 플룸으로 설명할 수 있다 이거 틀린거죠?...
-
쫌만더 0
하면 사탐두과목다 만점나올거같은데 제발 제발 제발 "2개월만에 사탐 노베에서...
-
여기서 추천해주실만한 회차 있을까요?! 다 못 풀어볼 거 같아서요,,,ㅠ
-
현역때 긴장 너무해서 잠 한숨도 못자길래 반수할땐 위스키 2잔 마시고 잠 ㅋㅋㅋ...
-
시험떨어졌네 1
왜사냐진짜 ㅅㅂ
-
ㄹㅇ개노베 8등급 이차함수도 지금 배우고있는사람이면 둘중 누구 듣는게 더 좋을까요...
-
5만원 개아깝네 걍 하지말걸
-
고전소설만 존나게 파고 헌대소설은 많이안했는데 미리 안보고가면 난해할만한 지문뭔지...
-
2년동안 수능보느라 5시 이후로만 봤는데 이제 드디어 글 리젠률 구경좀 하겠구만
-
수능꿀팁 3
이시간에 여길 왜들어와있니........... 자라
(1) a < b 일 때, 다음 꼴의 적분에 대한 일반적인 공식이 존재합니다.
∫_{from a to b} (x - a)^m (x - b)^n dx
특히 m = n = 1 일 경우에는 많은 문제집에서 소개하고 일부 교과서에서도 문제 등을 통해 소개하는 결과로
∫_{from a to b} (x - a)(x - b) dx = -(b-a)^3 / 6
가 있습니다. 이 식을 유도하는 방법은 여러가지가 있습니다만, 노가다를 뛰셔도 좋고, 치환적분을 해 보아도 좋고, 뭐 방법은 정말 많지요.
(1) 사람들이 개념을 강조하는 이유가 바로 이런 데 있습니다. 우리가 매일매일(?) 적분을 계산할 때 사용하는 위대한 정리인 정적분의 기본정리
[정리:정적분의 기본정리] 함수 f(x)가 [a, b]에서 연속이면, F(x) = ∫_{from a to x} f(t) dt 로 정의된 함수 F(x)는 [a, b]에서 미분 가능하며 F'(x) = f(x)를 만족한다.
를 다시 상기해보세요. 사실상 우리가 더 즐겨 쓰는 것은 이것의 따름정리인
[따름정리] f(x)가 [a, b]에서 연속이고 F(x)가 f(x)의 임의의 부정적분이면, ∫_{from a to b} f(x) dx = F(b) - F(a) 이다.
이지만, 그것보다 더 근본적인 것이 바로 정적분의 기본정리입니다. 그리고 이에 의해서
d/dx{ ∫_{from 3 to x} (x - t)f(t) dt }
= d/dx { x∫_{from 3 to x} f(t) dt } - d/dx { ∫_{from 3 to x} f(t) dt }
= ∫_{from 3 to x} f(t) dt + xf(x) - xf(x)
가 됩니다. 여기서 두 번째 등호에 정적분의 기본정리가 매우 명확하게 자기주장을 하면서 쓰인 것이 보이시나요?
친절한 답변 감사드립니다 !! 계속 보면서 이해할게요!