6평 21번, 심층분석 및 다항함수의 전개
게시글 주소: https://io.orbi.kr/00012187583
21번의 수험생의 가장 상식적인 풀이에 대하여 알아봅시다.
---------------------위는 요약이고 상식적인 풀이를 정리해봅시다.--------------------
처음에는 단순히 인수정리로 f(x)=(x-1)p(x)라 둔 후, 정리하고 또 p(x)=(x-1)q(x)라 둔 후 정리해서 다음까지는 온 학생이 많았을 것입니다. (물론, 핵심이 느껴져서 f(x)=(x-1)^n p(x)라 뒀으면 그 자체로 훌륭한 것이고요.)
이렇게 논리적으로 f(x)를 구했는데 여기서 바로 두번째 극한으로 넘어가지 말고, 식을 직관적으로 이해하려는 시도가 필요합니다. 주어진 식에서 3이 무엇을 의미할까? 생각해보면 인수정리를 여러번 하면서도 느꼈겠지만 f(x)에서 (x-1)이라는 인수가 몇번 들어가 있느냐?가 극한값임을 파악할 수 있습니다. 항상 이렇게 직관적으로 느껴보는 것이 필요함을 명심하도록 하구요. 거의 모든 어려운 문제는 직관과 논리를 오가며 풀이가 진행됩니다.
처음부터 (x-1)^n이 중요하다고 생각한 학생은 훌륭하지만, 그렇지 못한 학생이라도 (x-1)^3을 구한 후에는 직관적으로 느낄려고 노력하는 과정이 필요합니다.
여기까지 왔는데, 함수의 극한값을 구할 때에는 모두 수렴하는 함수로 표현하는 것이 핵심입니다.
앞에 주어진 극한인 의 의미를 파악한 상태에서 이를 이용하기 위해 식을 변형해봅시다.
인데 의 의미를 생각하면, 아래와 같이 극한값이 한정되는 것을 알 수 있습니다.
물론 직관적으로 못느낀 학생이라면 또 g(x)=x p(x), p(x)= x q(x) 등 무한 인수정리를 반복해야합니다. 최소한 f(x)=x^m p(x), g(x)=x^n q(x)라 식을 세웠다면 조금이라도 삘이 온 학생이겠죠.
이므로 이 됩니다.
따라서 f(x)에서는 x의 인수가 1개 존재해야 하므로 f(x)=x(x-1)^3이고 g(x)에서 x의 인수가 3개 존재해야 하므로 g(x)=x^3이다.
-----------------------------------------------------------------
문제 풀이는 여기서 끝입니다.
-----------------------------------------------------------------
포인트를 몇가지 분석해봅시다.
사실 인수정리를 한 번쓰는 문제야 수도 없이 출제가 되었지만 이렇게 1번 2번 3번쓰고 거기에 미분까지 동원해야하는 문제는 이 문제가 유일합니다. 유사한 발상을 한 번도 경험해보지 않은 학생에게는 매우 어려웠을 것인데, 이 발상은 (x-a)^n의 중복도와 매우 깊은 관계가 있는 다음 유명한 극한에서 자주 나오는 발상입니다.
(x-a)^1으로 나온 문제는 많이 봤을것이고, 다음 문제 (x-a)^2 또한 조금만 어려운 문제집을 경험해봤다면 자주 봤을 문항인데요.
위 문제에서 인수정리에 의하여 f(x)=(x-a)g(x)이라 한 후, 대입하고 또 g(x)=(x-a)h(x)라 한 후 대입 그리고
두 식을 미분해서 정리해야 f'(a), f''(a)를 찾을 수 있습니다. 물론 f(x)=ax^n ... 이라 두고 푸는건 자유이긴 하나 일반적으로 증명하기 위해선 인수정리가 온당합니다. 이 식은 실제로 고려대 논술에서도 출제가 되었고 유명한 주제이기도 하니 한번 쯤 경험해두도록 합시다.
한가지 주제를 더 보도록 할텐데, 다음은 교과서에 있는 내용입니다.
교과서의 조립제법 내용인데 위의 내용은 거의 모든 교과서에서 탐구활동이나 문제로 출제가 되고 있습니다.
즉, 위를 보면 모든 다항함수는 f(x)=ax^3+bx^2+cx+d=p(x-1)^3+q(x-1)^2+r(x-1)+s 정도로 얼마든지 정리할 수 있음을 알 수 있고요. 솔직히 공부를 많이한 학생이라면 이정도는 눈에 들어올 것이고, 어려운 문제집에서 접해본 경험도 있을 것입니다. 그런 학생일수록 직관적으로
와 같은 식이 인수 (x-1)^n을 뜻한다는 것이 훨씬 더 잘 와닿을 것입니다. 평소에 많이 경험을 해보고 문제를 풀어보는 것의 중요성이고, 그 과정에서 직관력과 논리력이 모두 늘 것입니다. 위와 같이 발상이 되는 사람은
으로 주어진 식에 대입하면 b=c=d=0과 a=/=0이 매우 쉽게 관찰될 것이고, (x-1)이라는 인수의 중복도가 중요함을 즉각적으로 눈치챌 수 있을 것입니다. 그게 된다면 뒤 극한부터도 일사천리이고요. 여기까지 이해하고, 다음 기출문제를 봅시다.
이 기출문제에서 x->0을 보면 우리 기출을 많이 보고 열심히 풀고 결과까지 외운 학생들은 최저차항의 계수를 뜻한다는 것을 쉽게 알 수 있을 것입니다.
위와 같이 평행이동되어 응용된다 해도, 제대로 기출을 공부한 학생이라면 c=d=0, b=2가 바로 보이는 학생이 되면 좋겠죠. 즉 (x-1)^2을 인수로 갖는 것이고, 그 계수가 2라는 것이죠.
이제 이 글 http://orbi.kr/00012149457 을 다시 보면 왜 발상적인 풀이가 아닌지 느껴질 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
법조계 빼고는 그냥 명분 필요 없음 이제 수많은 정치인 사법부랑 엮인 법조계만 살아남는 거지
-
어허 쯧쯔릇쯧쯧
-
역대로 안돌아가는 사례일듯 고장나서 안돌아가는 수준이 아님
-
내년에 개 많이 찔 거 예상하면.....
-
음하핫
-
인강 들으면 되려나...토익밖에 안쳐봐서 감이 안잡힘
-
내년에 앞자리 바뀌신다는 이야기 들으니 둘 다 벙찜 흠..
-
2등이면 걍 합격임? 모집인원 변동 없음
-
사실 드라마틱한건 아는데 그냥 자랑하고 싶었음
-
국어는 고정1이고 시발점+쎈>>고2자이>>한완기 평가원+교사경 >>뉴런>>n제 실모 5등급이에용
-
왜 싸운거임? 대충 상황 3줄 요약점
-
여기도 똑같은 커뮤구나 지금 알았누
-
ㅅㅂㅋㅋ
-
나도... 2
언젠가 채영님을 실물 영접 하는날 올까..
-
나였으면 벌써 롤 친구부터 끊었음
-
같이 밥먹을사람이없고, 얘기할사람이 없다는건. . . ㅜ 딱나네
-
난 어차피 그곳에 있는게 제일 중요해서 선예매는 실패했으니 스탠딩 앞번호대는 다...
-
화1 20번/생1 17번 손해설(필요할지는 모르겠지만) 0
이제와서 올리는게 의미있나 싶지만 과외구하면서 쓴거라 한번 보고 피드백주세용 해설지...
-
영어를 못하는 예비고3인데요(고2 모고3-4, 3학년 10모 3등급이요 . ㅠㅠ),...
-
지금라면먹으면 2
내일 안부으려나
-
빈지노는신이야 6
빈지노로 가득 찬 플리와 함께라면 가능이야
-
ㄹㅇㄹㅇ
-
하......
-
기출문제집 해설은 어차피 안보게 돼서 문제 선별이랑 종이질 기준으로 찾다보니 젤...
-
다른 커뮤에서 미적2틀 88이 2등급이라는데 그말만 하고 사라져서.... 구라겟죠?
-
학년에서 몇안되는 백점 받음 ㅎㅎ 후후 발표 코칭도 해줌
-
미적은 시발점 돌리는 중이고 26 버전 나오면 공통이랑 미적 다 빌드업 들을...
-
저 착해요 5
그렇죠!!??
-
한 십만원 필요한데
-
방금 핫도그 먹으면서 기분 개좋았다가 대학 예비 아직 받지도 않았는데 예비 너무...
-
진짜 세상에서 제일 애매한 내신이 3점대 중후반이라고 생각하고 시험도 거의 끝나가서...
-
내년에는 뭔가 잘볼수 있을거같음 올해 수능에서 껍질을 벗은느낌
-
여캐 일러 투척 4
큐어 라파 파
-
일반전형만 조사했고 지역인재는 제외했습니다 본인지역만보면 몇개안되니 직접 찾아보세요...
-
이거 맞다.
-
일본어 기본으로 깔고 지2or기하or확통 고민중인데 뭐 해야하지
-
나무위키 실검에 왜 뜨는지 했더니 푸스때문에 진짜 신곡낸다고 반응 안좋았는데 진짜 다 내려갈줄이야
-
님들생각이 궁금해짐. . . 특이한것같지만. . .
-
임정환T 내신 때문에 필요한 부분만 발췌해서 리밋 듣고 있는데 그냥 한 번에...
-
시발점 한 번 듣긴했는데 넘 대충들었었어요 맨처음배울때 바로 시발점으로 해서그런지...
-
그 나라의 모든 사람이 컸을때, 수도는 그나라에 머무르는역할을 하고 수도와...
-
“공부 안하면 성매매 여성보다 못해”…메가스터디 회장 발언 ‘논란’ 16
[KBS 대구] [앵커] 국내 최대 사교육 업체 대표가 대구의 한 고등학교 강연에서...
-
못하겠음 우제야 나는 잊지 않을거란다
-
신이 최우제 응원해달라고 하네요
-
질문받는다. 크....
-
이거 쉐딩스틱 맞나요??
-
때려죽여패도 3칸합은 절대안됨?
사진이안뜨는것같은데요
혹시 보이면 댓글좀 부탁드려요!
갓갓
이 글 이해원하는분들은 지금이라도 http://atom.ac/books/3853 를 구입하셔서 3회독을 하시면
이런 글을 쓸 수 있습니다
머장님 1, 2 번째사진빼고 싹엑박뜹니다 ㅠㅠ
새벽부터 감사합니다 ㅋㅋ 이제 보이나요?
네네 ! 좋은자료 항상 감사합니다 !
갓갓..
21번 심층분석 ㄷㅅㅂㄱ
머장님 감사합니다!!
어 저도 sinx 나와서 x 곱해서 풀었는데 극한식에서 막 이렇게 곱해도 되나 궁금했는데 시중풀이가 저처럼 푼 풀이가 없었어요... 역시 해원님!!!!
30번 다항함수 풀때는 한완수 도움 많이 받았습니다 감사합니다
잘 푸셨네요 대단하세요 ㅋㅋ
윽 한번 이렇게 냈으니 올해 다시는 킬러로 이런 스타일은 못나오겠구만요
그것보다는 인수정리 등 논리적 계산을 거치면서도 그 식이 가지는 의미를 직관적으로 파악하려고 노력하는 과정. 킬러문제에서 항상 반복되는 직관과 논리를 오가며 풀이가 진행되는 과정 등을 파악하는 것이 공부겠죠ㅎㅎ
리미트가 분모 분자로 배분될때 분자가 0으로 가면 어떻하나.. 하는 생각에 쉽사리 배분을 못했는데 의문점을 한방에 해결해주시는군요. 감사합니다. 한완수도 호기심이 생기네요.
이해원모의고사 언제나와요?
(x-1)^n놓고 꽤 쉽게 풀었는데 끝나고보니 21이 가장 어렵단 말이 많더군요
딱 저렇게 풀어서 거의 6분컷...그리고 29번에서 털렸죠 ㅠ