6평 대비 킬캠 가형 후기
게시글 주소: https://io.orbi.kr/00012070574
먼저 퀄리티 제 생각에는 시중모고나 ebs모고에 비해 훨씬 좋았던거 같아요
이거 보고 해설 들으면서 현우진 쌤 때문에 메가 안산걸 후회하게 되더라고용
21번, 29번, 30번은 해설 들어도 모르겠네요 개 빡대가리라서;;
한가지 흠은 제 종이만 그런지 몰라도 너무 잘 찢어졌어요ㅠ
한번 다른 님들도꼭 풀어보시길!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하와이 시치 0
새벽부터 귀찮게하네
-
바쁘다 바빠
-
인천으로가자 3
오늘도 밤샘후논술 달려볼까요~
-
대학라인 0
언미화1생1 87 99 3 73 91 라인좀 봐주세요..
-
지금 미친듯이 존나 해놓기는 해야되나
-
음 졸린 아침. 3
다시 자기.
-
...??
-
금방가네
-
나만 걱정되나 3
마킹실수했을까봐 존나 걱정됨
-
00년생이지만 빠른년생이라 99년생이라 보시면될듯합니다 군제대 완료했고 작년에...
-
님아. 7
저 좀 자라고 따끔하게 말좀 해주세요 님아.
-
광덕이와 닮았다
-
엉엉울었어 7
사랑하는 나의 억압자 44화를 봐버렸어
-
1. 일을 해결하는 프로세스를 계획하는 TF를 만든다 2. 일을 해결하는 프로세스를...
-
화장실 아닌거같고 갑자기 아파서깼는데 약간 속이 더부룩?하고 배가 스르르 아프다가...
-
바로 지원함
-
진학사5칸 텔그기준 55퍼떠요
-
전사의 힘스탯 같은거임 암기못하는데 공부하려고 하는건 인트 찍고 전사 하려는거랑...
-
집에서 맥도날드가 너무 멀리 떨어져있음 조조같다
-
anything ok
-
감튀 웨지감자 해시브라운 크아악
-
호빠에서 일할정도면 11
얼마나 잘생겨야함? ㅈㄴ 궁금하네
-
저 110렙 넘김 ㅎ
-
틀닥은 가라 4
펨코 오유 웃대 하나 골라서 ㄱㄱ
-
1.마스크껴서얼굴가리기 2.다이소거울보지않기...
-
ㅈㄱㄴ
-
예체능, 유투브, 사업은 재능이라는 핑계로 시도조차 안하면서 정작 공부야말로...
-
공부도 안하고 폰만 보면서 계획만 세우는데 진짜 자괴감든다 오늘 한것도 없고 남들은...
-
세점먹으면 질리는 개거품음식인데
-
동덕여대 라커지우는건 AI가 대체할 수 없음 거기다 이런 일들은 앞으로 더 많아질 예정임
-
여전히 ㅈㄴ 많기는한데 대신 반일도 줄은거같음 제식갤 유저가 줄었나 예전에는 선넘는...
-
똑똑 3
다들 자니?
-
물리50 1
물리50 백분위 99나 100나옴? 주위에 만점자가 생각보다 많아서 걱정이네
-
화2 해볼려는데 1
화2 하려면 1내용 어느정도 알아야된다고 해서 그런데 문제는 제가 화학이 아예...
-
투명하다 투명해 1
이제 좀 정신이 들어?
-
내가 자살한다면 3
내 흔적조차 발견하지 못 할 것입니다 진짜로
-
ㅈㄱㄴ
-
왜냐면 그건 4수해서 서울대로 가라는 신의 계시나 다름없기 때문 그냥 완전 럭키빗치...
-
아오 뭐야 12월이네 11
곧 크리스마스
-
수능 전엔 공부가 고통 수능 끝나니까 장염이 고통 성적표 나오면 점수가 고통 언제쯤...
-
반가워 8
-
국어는 물로 나와서 변별 안되고 수학 13까지는 누구나 맞출 정도로 공통 개쉬워서...
-
존재한다 안한다 설공은 답변 ㄴㄴ하셈뇨
-
양의 실수 전체의 집합에서 정의된 두 연속 함수 f, g에 대하여 (가) 방정식...
-
질문해드림뇨 27
오르비살리기프로젝트
-
젊은것들이 벌써자?
저는 포장지가 예뻐서 다시 넣어서 고이 보관해뒀어요 ㅋㅋ
포장지 짱이뻐요 정성스러운듯
이거 신청안했으면 못보죠? ㅠㅜ
넹...
저는 29번이 제일 어렵.. 아직이해안됨ㅋㅋㅋ
솔까 아직도 이해못하겠어요ㅠ
21.30이 전 오히려 쉬운듯..
29는 음 AX가 2인것만 찾으면 어렵지 않아요
해설지는 해설지대로 보시되 AX가 2에서 삼각형 AXB가 이등변인것을 이용해요 각AXB를 theta라두고 그 범위가 0이상 ㅠ/2이하인것에 착안하면 어렵지 않아요ㅎ
21근데 h가 f>4x인 x부터 x가 증가함에 따라 그 차이가 증가해 무한대까지 가기에 h의 최대가 없어요 물론 최소도 마찬가지구요...조건(나)가 모순이에요
아하 모순인가여?? 전 그 쪽은 손도 못돼서 몰랐네요;;
아;;;네넹
그....g가 증가잖아요 그럼 g안의 f-4x가 어느 x의 값부터 x가 증가함에 따라 증가한다면 g의 치역은 어차피 실수 전체이므로 계속증ㅈ가하겠죠 근데 f의 식을 구하면 알수 있듯이 f와 4x의 교정은 분명히 a에 상관없이 발생하고 그럼 그 점이후부턴 x가 증가시 f-4x도 그 값이 증가합니다 그래서 엇쨌거나 Lim x->inf 일때 f-4x ->inf에서 h는 무한대를 향해 갑니다 따라서 최대는 없고 마찬가지로 최소도 없어요
따라서 전 조건 (나)가 묻는 취지는 극대 극소지만 잘못됬어요
오 지금 저도 그거 때문에 검색하고 있었는데ㅋㅋ
풀때는 딱봐도 무한대같은데 극대극소아니면 절대 답이 안나와서 그냥 극대극소라고하고풀었음ㅋㅋㅋ
근데 서점에서 실모나봉투모의고사안팔죠??ㅠㅜ